Extraction of Gluon Distribution Functions from ALICE Experimental Data

XIX INTERNATIONAL BALDIN SEMINAR ON HIGH ENERGY PHYSICS PROBLEMS "RELATIVISTIC NUCLEAR PHYSICS AND QUANTUM CHROMODYNAMICS"

Patsyuk Maria, Sidorov A.V.

PDF definition

In the inelastic collision of a nucleon with a particle, the Bjorken x is the fraction of the nucleon momentum carried by parton that enters the hard scattering process. The distribution of x for a given parton type is called Parton Distribution Function (PDF) and it gives probability to pick up a parton with momentum fraction x from the nucleon.

LHAPDF – PDF library, containing different parameterization sets (CTEQ, GRV, MRST, Alekhin...).

Existing PDF parameterizations.

Fig. 10: Gluon distribution functions in the proton at the scale of the charmonium calculations. The lower solid curve is the scale independent $(1 - x)^5$, the other solid curve employs the MRST HO distributions with $\mu = 2.4$ GeV, the dashed, GRV 98 HO with $\mu = 1.3$ GeV, the dot-dashed, MRSD-' with $\mu = 2.4$ GeV, the dotted, GRV HO with $\mu = 1.3$ GeV and the dot-dot-dashed, CTEQ 5M with $\mu = 2.4$ GeV.

ALICE capability to study low-x area

Figure 6.258. ALICE acceptance in the (x_1, x_2) plane for charm (left) and beauty (right) at 5.5, 8.8 and 14 TeV.

Color Evaporation Model

Quarkonium production cross section:

-Fraction Fc of all $Q\bar{Q}$ pairs below $H\bar{H}$ threshold; $F_c = 0.03654$

- No constraints on the color or spin of final state;

-Neutralization of color by the interaction with collision-induced color field – "color evaporation".

At leading order, the production cross section of quarkonium state C in an AB collision is:

$$\sigma_C{}^{CEM} = F_C \sum_{i,j} \int_{4m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 dx_2 f_{i/A}(x_1,\mu^2) f_{j/B}(x_2,\mu^2) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s} - x_1 x_2 s)$$

Color Evaporation Model

Subprocess cross section can be obtained through the evaluation of the lowest–order Feynmann diagrams:

$$\hat{\sigma}_{gg \to f\bar{f}}(s) = \frac{\pi \alpha_s^2}{3s} \left[\left(1 + \frac{4m_f^2}{s} + \frac{m_f^4}{s^2} \right) \ln \left(\frac{1 + \omega(s)}{1 - \omega(s)} \right) - \left(\frac{7}{4} + \frac{31m_f^2}{4s} \right) \omega(s) \right],$$

$$\omega(s) = \sqrt{1 - \frac{4m_f^2}{s}}$$

Color Evaporation Model

$$\sigma_C{}^{CEM} = F_C \sum_{i,j} \int_{4m_Q^2}^{4m_H^2} d\hat{s} \int dx_1 dx_2 f_{i/A}(x_1,\mu^2) f_{j/B}(x_2,\mu^2) \hat{\sigma}_{ij}(\hat{s}) \delta(\hat{s} - x_1 x_2 s)$$

Assumptions:

-the main term is ij=gg, we neglect other terms;

-leading order of charmonia production cross section;

-PDF are taken from parameterizations, here CTEQ6m is used.

$$x_1 \cdot f_{i/A}(x_1, \mu^2) = x_1 \underbrace{\frac{\partial \sigma_C^{CEM}}{\partial x_1}}_{F_C} \frac{1}{F_C} \left(\int_{4m_Q^2}^{4m_H^2} d\hat{s} \underbrace{\frac{x_2 \cdot f_{j/B}(x_2, \mu^2)}{\hat{s}/sx_1}}_{S/sx_1} \hat{\sigma}_{ij}(\hat{s}) \right)^{-1}$$

Simulated distribution of charmonia cross section

Results

Conclusions

- Results are preliminary;
- Only statistical errors are taken into account;
- Systematic errors are not studied yet;
- The detector response and acceptance window could influence the experimental results;
- The behavior of curves is right.

Literature:

- arXiv:hep-ph/0311048 v1
- "Hadrons and Quark-Gluon Plasma"
 J.Letessier, J.Rafelski, Cambridge University press, 1998.