M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical qua mass Quark condensate F_{π} , M_{π} and

Conclusion

Low Energy Constants of χPT from the instanton vacuum

M. Musakhanov

National University of Uzbekistan

in the collaboration with K. Goeke, H.-C. Kim, M. Siddikov

Phys. Lett. **608** (2005) 95, Phys. Rev. D **76** (2007) 076007, Phys.Rev. D **76** (2007) 0116007.

Dubna, XIX ISHEPP, September 29 - October 4, 2008

Outline

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Quark condensate

 F_{π} , M_{π} and \overline{I}_3 , \overline{I}_4

Conclusion

Introduction

- Chiral symmetry of QCD
- Chiral Lagrangian
- QCD instanton vacuum
- Light quarks in the instanton background
 - Dynamical quark mass
 - Quark condensate
 - F_{π} , M_{π} and \overline{I}_3 , \overline{I}_4

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical q mass Quark condensate F_{π} , M_{π} a

Conclusion

The QCD lagrangian has a form

$$\mathcal{L}_{ ext{QCD}} = -rac{1}{2} ext{tr}(G_{\mu
u}G^{\mu
u}) + \sum_{f=1}^{N_F} \overline{q}_f \left(i\widehat{D} - m_f\right) q_f$$

• Is invariant w.r.t. color gauge transformations $q
ightarrow e^{ieclpha t_c} q$

- Is invariant w.r.t. flavour gauge transformations $q
 ightarrow e^{i ec lpha ec t_{
 m f}} q$
- In chiral limit there is an additional invariance w.r.t. nonsinglet axial flavour gauge transformations $q \rightarrow e^{i\vec{\beta}\vec{t}_f\gamma_5}q$.
- The chiral symmetry is dynamically broken and leads to appearance of the Goldstones (mesons).
- Also, S χ SB leads to nonzero vacuum condensates, such as $\langle \bar{q}q \rangle$, $\langle G^{\mu\nu}G_{\mu\nu} \rangle$, as well as masses of the baryons etc.
- For the lightest mesons with masses $M_f^2 \ll 1 \ GeV^2$ the chiral symmetry must be a good approximation.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass Quark condensate $F_{\pi} \stackrel{1}{\rightarrow} M_{\pi}$ and

Conclusion

The basic object we study are the correlators. At low-energies the dynamics is described in terms of the effective degrees of freedom (mesons).

• Effective chiral lagrangian – description in terms of effective (meson) degrees of freedom. To the lowest order in pion momenta q and external field

 $\hat{V}=s+p\gamma_5+m{v}_\mu\gamma_\mu+a_\mu\gamma_\mu\gamma_5$ it has a form (Gasser, Leutwyler, 1984)

$$L_2 = \frac{F^2}{2} \left\langle D_{\mu} U^{T} D_{\mu} U \right\rangle + F^2 \left\langle \chi^{T} U \right\rangle.$$

 $(U = u_0 + i\vec{\tau}\vec{u}, \ U^{\dagger}U = 1, D_{\mu}u_0 = \partial_{\mu}u_0 + a^i_{\mu}u_i, D_{\mu}u_i = \partial_{\mu}u_i - a^i_{\mu}u_0 + \epsilon_{ijk}v^j_{\mu}u_k, \chi = 2B(s, \vec{p}), \text{ consider } N_f = 2.)$ The simplest observables:

condensate in the chiral limit.

$$\langle qq(m) \rangle = \frac{\delta \ln Z}{\delta s} \approx -F^2 B + \mathcal{O}(m),$$

$$\int d^4 x \, e^{-iq \cdot x} \left\langle j^{a,5}_{\mu}(x) j^{b,5}_{\nu}(0) \right\rangle = \int d^4 x \, e^{-iq \cdot x} \frac{\delta^2 \ln Z}{\delta a^a_{\mu} \delta a^b_{\nu}} =$$

$$F^2_{\pi} \delta^{ab} \left(g_{\mu\nu} - \frac{q_{\mu}q_{\nu}}{q^2 + M^2_{\pi}} \right) + \mathcal{O}(q^2), \ M^2_{\pi} \approx 2B \ m + \mathcal{O}(m).$$
The constants F, B define pion decay constant and quart

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass Quark condensate $F_{\pi_1} M_{\pi}$ and I_{13} , I_{14}

Conclusion

 $L_{4} = h_{1}(D_{\mu}U^{T}D_{\mu}U)^{2} + h_{2}(D_{\mu}U^{T}D_{\nu}U)(D_{\mu}U^{T}D_{\nu}U) + h_{3}(\chi^{T}U)^{2} + h_{4}(D_{\mu}\chi^{T}D_{\mu}U) + h_{5}(U^{T}F_{\mu\nu}F_{\mu\nu}U) + h_{6}(D_{\mu}\chi^{T}F_{\mu\nu}D_{\nu}U) + h_{7}(\tilde{\chi}^{T}U)^{2} + h_{1}(\chi^{T}\chi) + h_{2}\mathrm{tr}(F_{\mu\nu}F_{\mu\nu}) + h_{3}(\tilde{\chi}^{T}\tilde{\chi})$

• So now we have 10 independent constants.

- l_i, h_i are *bare* constants, they are renormalized by pion loops to $l_i^r(\mu^2)$.
- Physical observables should be expressed in terms of $\bar{l}_i = \frac{32\pi^2}{\gamma_i} l_i^r (\mu^2 = M_{\pi}^2)$. The μ^2 -dependence in l_i^r (and consequently M_{π}^2 -dependence in \bar{l}_i) are logarithmic, $\bar{l}_i = \alpha_i \ln M_{\pi}^2$.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass

Quark condensate

 F_{π} , M_{π} and \overline{l}_3 , \overline{l}_4

Conclusion

• For physical observables it leads to nonanalytical *m*-dependence (Novikov *et.al.*, 1981):

$$egin{aligned} &\langle ar{q}q(m)
angle = \langle ar{q}q(0)
angle \left(1 - rac{3m_\pi^2}{32\pi^2 F^2} \ln m_\pi^2
ight) \ &F_\pi^2(m) = F_\pi^2(0) \left(1 - rac{m_\pi^2}{8\pi^2 F^2} \ln m_\pi^2
ight) \ &M_\pi^2(m) = m_\pi^2 \left(1 + rac{m_\pi^2}{32\pi^2 F^2} \ln m_\pi^2
ight) \end{aligned}$$

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qu

Quark condensate

 \bar{l}_{3}, \bar{l}_{4}

Conclusion

LECs and observables in pion physics:

Universality of constants. Example of observables (Gasser, Leutwyler, 1984):

1 $\pi - \pi$ S-wave scattering length:

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} \left[1 + \frac{5M_\pi^2}{84\pi F_\pi^2} (\bar{l}_1 + 2\bar{l}_2 - \frac{3}{8}\bar{l}_3 + \frac{21}{10}\bar{l}_4 + \frac{21}{8}) \right]$$

Pion electromagnetic charge radius:

$$F_{
u}(t) = 1 + rac{1}{6} t \left< r_{\pi}^2 \right>_{
u} + ..., \ \left< r_{\pi}^2 \right>_{
u} = rac{1}{16 \pi F} (ar{l}_6 - 1) + O(m_{\pi}^2)$$

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass

Quark condensate

 F_{π} , M_{π} an \overline{l}_3 , \overline{l}_4

Conclusion

Running and discontinued experiments

 DIRAC@CERN ⇒ lifetime of π⁺π⁻, πK atoms. ⇒ |a₀⁰ - a₀²| and |a₀^{1/2} - a₀^{3/2}| in S-channel up to 5% (Gasser *et.al.*, 2001, J. Schweizer, 2004).
 K → ππeν @BNL E865.⇒ a₀⁰.

$$K^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$$
 @NA48/2. $\Rightarrow |a_{0}^{0} - a_{0}^{2}|.$

- ^a $\gamma p \rightarrow \gamma \pi^+ n$ reaction study at the Mainz Microtron MAMI to find pion electromagnetic polarizabilities.
- 5 (Discontinued) $\gamma \gamma \rightarrow \pi^+ \pi^-$ experiments as PLUTO, DM1, DM2
- Lattice evaluation of different constants (MILC, ETM, JLQCD, RBC/UKQCD, PACS-CS, etc.)

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass

Quark condensate

 F_{π} , M_{π} and \overline{I}_{3} , \overline{I}_{4}

Conclusion

We assume that the promising method is the application of instanton vacuum model.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass Quark

condensate

 F_{π} , M_{π} and I_3 , I_4

Conclusion

QCD instantons

Instantons –classical solutions of the equations of motion in Euclidean space. In singular gauge (Belavin *et.al.*, 1975):

$$A^{I,a}_{\mu}(x) = \frac{2\rho^2 \bar{\eta}^{\nu}_{\mu a}(x-z)_{\nu}}{(x-z)^2 [\rho^2 + (x-z)^2]}$$

For the antiinstanton just change the t'Hoft symbol $\bar{\eta} \rightarrow \eta$. • The solutions are <u>(anti)self-dual</u>, *i.e.* $G^a_{\mu\nu} = \pm \tilde{G}^a_{\mu\nu}$.

- The topological charge $Q = \frac{1}{32\pi^2} \int d^4 x \ G^a_{\mu\nu} \tilde{G}^a_{\mu\nu} = +1$ for instantons and -1 for antiinstantons.
- The action on both instantons and antiinstantons $S_I = \frac{8\pi^2}{g^2} \Rightarrow$ the amplitude of tunneling $\sim \exp(-S_I)$ with $|\Delta N_W| = 1$,
 - $N_W = \frac{1}{24\pi^2} \int d^3 x \epsilon_{ijk} \left\langle \left(U^{\dagger} \partial_i U \right) \left(U^{\dagger} \partial_j U \right) \left(U^{\dagger} \partial_k U \right) \right\rangle.$
- Number of collective coordinates for each instanton:
 - $4 (centre) + 1 (size) + (4N_c-5) (orientations) = 4N_c$

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass Quark condensate $F_{\pi_1} M_{\pi}$ and I_{3}, I_4

Conclusion

Dependence on N_{CS}

Figure: Dependence of the vacuum gluon fields energy on the Chern-Simons number N_{CS} .

Instanton ensemble

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass Quark

condensate $F_{\pi_2} M_{\pi}$

Conclusion

• Sum ansatz $A = \sum_{I} A^{I} + \sum_{\overline{I}} A^{\overline{I}}$ for dilute gas approximation. Allows analytical evaluation, even with quarks.

• Example of exact multiinstanton solution (self-duality):

$$A^{a}_{\mu} = \bar{\eta}_{a\mu\nu}\partial_{\nu}\ln\left(1 + \sum_{i}\frac{\rho_{i}^{2}}{(x - z_{i})^{2}}\right)$$

- Instanton-antiinstanton interactions: Ratio ansatz, Streamline ansatz. Sum ansatz gives too strong repulsion for R ≤ ρ.
 - Partition function-only numerically (lattice).

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua

Quark condensate

 F_{π} , M_{π} an \overline{I}_3 , \overline{I}_4

Conclusion

• Size distribution D(ho) and average value ar ho

Parameters of instanton ensemble

- Density of instantons (or average interinstanton distance \bar{R})
- Results:
 - Lattice estimate: $\bar{R} \approx$ 0.89 fm, $\bar{\rho} \approx$ 0.36 fm,
 - Phenomenological estimate: $ar{R}pprox 1$ fm, $ar{
 ho}pprox 0.33$ fm,
 - Our estimate (with account of $1/N_c$ corrections): $\bar{R} \approx 0.76 \text{ fm}, \ \bar{\rho} \approx 0.32 \text{ fm},$

Thus within 10-15% uncertainty different approaches give similar estimates

• Packing parameter $\frac{\pi^2(\frac{\vec{p}}{\vec{R}})^4 \sim 0.1 - 0.3}{\Rightarrow}$ Independent averaging over instanton positions and orientations.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass Quark condensate

 F_{π} , M_{π} an \overline{l}_3 , \overline{l}_4

Conclusion

QCD vacuum on the lattice

Figure: Action and topological charge densities in different configurations on the lattice.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quar mass Quark condensate F_{π}, M_{π} and I_{3}, I_{4}

Conclusion

Basic assumptions (Diakonov *et.al.*, 1986-2006):

Light quarks in the instanton background

- Sum ansatz as background. Quarks ⇒ quenched approximation.
 - Zero-mode approximation

$$S(x,y) pprox rac{|\Phi_0
angle \langle \Phi_0|}{im} + rac{1}{i\hat{\partial}} (i\hat{\partial} + g\hat{A}) \Phi_0 = 0,$$

• The number of colors $N_c
ightarrow \infty$, LO over N_c is kept.

• The width of the size distribution is suppressed as $1/N_c$ are working well at $m \Rightarrow 0$ but wrong beyond the chiral limit.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quamass Quark condensate $F_{\pi_1} M_{\pi}$ and I_3, I_4

Conclusion

Zero mode vs. Chiral Symmetry

Extension of zero-mode approximation beyond the chiral limit:

$$S_i = S_0 - S_0 \hat{
ho} rac{|\Phi_{0i}\rangle\langle\Phi_{0i}|}{\langle\Phi_{0i}|\hat{
ho}S_0\hat{
ho}|\Phi_{0i}
angle} \hat{
ho}S_0, \ \ S_0 = rac{1}{\hat{
ho} + im},$$

$$S_i |\Phi_{0i}\rangle = rac{1}{im} |\Phi_{0i}\rangle, \ \langle \Phi_{0i} | S_i = \langle \Phi_{0i} | rac{1}{im}.$$

Full propagator in the presence of the external fields $\hat{V} = s + p\gamma_5 + \hat{v} + \hat{a}\gamma_5$:

$$\begin{split} \tilde{S} - \tilde{S}_0 &= -\tilde{S}_0 \sum_{i,j} \hat{p} |\phi_{0i}\rangle \left\langle \phi_{0i} \left| \left(\frac{1}{\hat{p} \tilde{S}_0 \hat{p}} \right) \right| \phi_{0j} \right\rangle \langle \phi_{0j} | \hat{p} \tilde{S}_0 \rangle \\ |\phi_0\rangle &= \frac{1}{\hat{p}} L \hat{p} |\Phi_0\rangle, \ \tilde{S}_0 &= \frac{1}{\hat{p} + \hat{V} + im} \\ L_i(x, z_i) &= \Pr \exp \left(i \int_{z_i}^x dy_\mu(v_\mu(y) + a_\mu(y)\gamma_5) \right) \end{split}$$

Effective action

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quarmass Quark condensate F_{π} , M_{π} and I_3 , I_4

Conclusion

$\ln \tilde{\mathrm{Det}}_{low} = \mathrm{Tr} \int dm \, \tilde{S}(m) = \ln \det \langle \phi_{0,i} | \hat{p} \tilde{S}_0^{fg} \hat{p} | \phi_{0,j} \rangle,$

Averaging of $\tilde{\text{Det}}_{low}$ over instantons by means of fermionization \rightarrow constituent quarks \rightarrow partition function Z. Exponentiation in Z via Stirling-like formula \rightarrow dynamical coupling λ

$$\begin{split} Z_{N} &= \int d\lambda_{+} d\lambda_{-} D\bar{\psi} D\psi e^{-S} \\ S &= N_{\pm} \ln \frac{K}{\lambda_{\pm}} - N_{\pm} + \psi^{\dagger} (i\hat{\partial} + \hat{V} + im)\psi + \lambda_{\pm} Y_{2}^{\pm} \\ Y_{2}^{\pm} &= \int d\rho D(\rho) \left(\alpha^{2} \det J^{\pm} + \beta^{2} \det J_{\mu\nu}^{\pm} \right) \\ \frac{\beta^{2}}{\alpha^{2}} &:= \frac{1}{8N_{c}} \frac{2N_{c}}{2N_{c} - 1} = \frac{1}{8N_{c} - 4} = \mathcal{O}\left(\frac{1}{N_{c}}\right) \\ J_{fg}^{\pm} &= \psi_{f}^{\dagger} \overline{L} \frac{1 \pm \gamma_{5}}{2} L\psi_{g}, \ J_{\mu\nu}^{\pm} = \psi_{f}^{\dagger} \overline{L} \sigma_{\mu\nu} \frac{1 \pm \gamma_{5}}{2} L\psi_{g}. \end{split}$$

Effective action after bosonization

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass Quark condensate F_{π}, M_{π} and \bar{l}_3, \bar{l}_4

Conclusion

$$Z_{N} = \int d\lambda_{+} d\lambda_{-} D\bar{\psi} D\psi D\Phi^{\pm} D\Phi^{\pm}_{\mu\nu} e^{-S}$$

$$S = -N_{\pm} \ln \lambda_{\pm} + 2\left(\Phi_{i}^{2} + \frac{1}{2}\Phi_{i,\mu\nu}^{2}\right) + \psi^{\dagger} \left[i\hat{\partial} + \hat{V} + im + i\lambda^{0.5} \bar{L}F(p)\left(\alpha \Phi_{i}\Gamma_{i} + \frac{1}{2}\beta \Phi_{i,\mu\nu}\sigma_{\mu\nu}\Gamma_{i}\right)F(p)L^{-1}\right]\psi$$

 $\Gamma_i = \{(1, i\vec{\tau}\gamma_5), (\gamma_5, i\vec{\tau})\}$ Integrate out fermions:

$$S = -N_{\pm} \ln \lambda_{\pm} + 2\left(\Phi_i^2 + \frac{1}{2}\Phi_{i,\mu\nu}^2\right) - Tr \log\left[\hat{p} + \hat{V} + im + i\lambda^{0.5}\bar{L}F(p)\left(\alpha\Phi_i\Gamma_i + \frac{1}{2}\beta\Phi_{i,\mu\nu}\sigma_{\mu\nu}\Gamma_i\right)F(p)L^{-1}\right]$$

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass Quark condensate F_{π} , M_{π} and $\overline{l_3}$, $\overline{l_4}$

Conclusion

• Bosonization \Rightarrow mesons. Chiral doublets: $(\sigma, \vec{\phi}), (\eta, \vec{\sigma})$ and $(\sigma_{\mu,\nu}, \vec{\phi}_{\mu\nu})$.

- Meson loops are $1/N_c$ corrections \Rightarrow need to take into account all $1/N_c$ corrections. \Rightarrow Double expansion $(1/N_c, m)$.
- Regularization@ $q \sim \rho^{-1}$ via nonlocality.
- Other sources of $1/N_c$ -correction:
 - Finite width of size distribution.
 - Shift of the coupling λ .

Momentum dependence of dynamical quark mass M(q)

M. Musakhanov

Figure: Momentum dependence of dynamical quark mass M(q) in the chiral limit. Points: lattice result (P.Bowman *et. al.,*, 2004). Red line: zero-mode approximation (Diakonov&Petrov86), **no fitting**.

M. Musakhanov

Dynamical quark mass

$$\begin{split} \frac{N}{V} &- \frac{1}{2V} \operatorname{Tr} \left(Q(p) \right) \\ &+ \int \frac{d^4 q}{2\sigma^2 (2\pi)^4} \sum_i \left(V_2^i(q) - V_3^i(q) \right) \Pi_i(q) = 0, \\ &4\sigma^2 - \frac{1}{V} \operatorname{Tr} \left(Q(p) \right) + \int \frac{d^4 q}{\sigma^2 (2\pi)^4} \sum_i V_3^i(q) \Pi_i(q) = 0. \\ &Q(p) = \frac{i M(p)}{\hat{p} + i \mu(p)}, V_n^i(q) = \operatorname{Tr} \left(Q^{n-1}(p) \Gamma_i Q(p+q) \Gamma_i \right) \end{split}$$

Chiral log theorem:

$$M(m) = M(0) \left(1 - rac{3m_\pi^2}{32\pi^2 F^2} \ln m_\pi^2
ight)$$

Light quarks in the instanton

Dynamical quark mass

Quark condensate F_{π_1} , M_{π} and I_3 , I_4

Conclusion

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass

Quark condensate F_{π} , M_{π} and I_{2} , I_{4}

Conclusion

m-dependence of the dynamical quark mass M(m). $M(m) = 0.36 - 2.36 m - \frac{m}{N_c} (0.808 + 4.197 \ln m) + O\left(m^2, \frac{1}{N_c}\right)$

Figure: *m*-dependence of the dynamical quark mass M(m). Comparison with lattice data (Bowman 2005)

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Dynamical quark mass

condensate F_{π_2} , M_{π} and I_3 , I_4

Conclusion

Finite width correction

2-loop instanton size distribution (Diakonov ' 83, Vainshtein *et.al.*, ' 82)

$$D(\rho) \sim \left(\Lambda \rho\right)^{\frac{11N_c}{3}-5} \left(\ln\left(\Lambda \rho\right)\right)^{-N_c \left(\frac{5}{11}-\frac{255}{1331 \ln(\Lambda \rho)}\right)}$$

Figure: Left: Instanton size distribution. Right: change of the M(p)-dependence due to FWC.

M. Musakhanov

Quark condensate

$-\langle \bar{q}q \rangle(m) = ((0.00497 - 0.0343 m) N_c + (0.00168 - 0.0494 m - 0.0580 m \ln m)) + \mathcal{O}\left(m^2, \frac{1}{N_c^2}\right)$

of QCD Chiral Lagrangian QCD instanton

Light quarks in the instanton

Dynamical quar

Quark condensate

 F_{π} , M_{π} and \overline{l}_3 , \overline{l}_4

Conclusion

 $egin{array}{c|c} F_{\pi}, & M_{\pi} & \ & \int d^4 imes e^{-iq\cdot imes} \left\langle j^{a,5}_{\mu}(imes) j^{b,5}_{
u}(0)
ight
angle ext{-correlator}$

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background

Quark condensate

 $rac{F_{\pi}}{I_3}, rac{M_{\pi}}{I_4}$ and

Conclusion

Figure: Contribution to correlator and π -meson propagator (last row)

 F_{π}, M_{π}

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quark in the

Dynamical quark mass Quark

 $F_{\pi_1} M_{\pi}$ and I_{3}, I_4

Conclusion

$$F_{\pi}^{2} = N_{c} \left(\left(2.85 - \frac{0.869}{N_{c}} \right) - \left(3.51 + \frac{0.815}{N_{c}} \right) m - \frac{44.25}{N_{c}} m \ln m + \mathcal{O}(m^{2}) \right) \cdot 10^{-3} \left[\text{GeV}^{2} \right] = (7.67 - 11.35 \, m - 44.25 \, m \ln m) \cdot 10^{-3} \left[\text{GeV}^{2} \right]$$

$$M_{\pi}^{2} = m \left(\left(3.49 + \frac{1.63}{N_{c}} \right) + m \left(15.5 + \frac{18.25}{N_{c}} + \frac{13.5577}{N_{c}} \ln m \right) + \mathcal{O}(m^{2}) \right) = m (4.04 + 21.587 \, m + 4.52 \, m \ln m + \mathcal{O}(m^{2})) [\text{GeV}^{2}]$$

Low Energy Constants of χPT from the instanton vacuum

 F_{π}, M_{π}

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quarks in the instanton background Dynamical qua mass

Quark condensate

$$F_{\pi}$$
, M_{π} an \overline{l}_3 , \overline{l}_4

Conclusion

Figure: F_{π} and M_{π}^2 as a function of *m*.

M. Musakhanov

Introduction

Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum

Light quark in the instanton

Dynamical quark mass Quark

 $F_{\pi_1} M_{\pi}$ and I_{3}, I_4

Conclusion

$$F_{\pi}, M_{\pi}$$

F

$$F^{2} = \left(2.85 N_{c} - 0.87 + \mathcal{O}\left(\frac{1}{N_{c}}\right)\right) \times 10^{-3} [GeV^{2}]$$
$$B = 1.75 + \frac{0.82}{N_{c}} + \mathcal{O}\left(\frac{1}{N_{c}^{2}}\right) [GeV]$$

$$\bar{l}_{3} = \frac{-1.14 N_{c} \left(1 + \frac{0.872}{N_{c}} + \frac{0.875 \ln m}{N_{c}} + \mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)\right)}{1 + \frac{0.94}{N_{c}} + \mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)} = -1.14 N_{c} + 0.074 - \ln m + \mathcal{O}\left(\frac{1}{N_{c}}\right)$$
$$\bar{l}_{4} = \frac{-0.079 N_{c} \left(1 + \frac{0.232}{N_{c}} + \frac{12.6 \ln m}{N_{c}}\right)}{1 + \frac{0.47}{N_{c}} + \mathcal{O}\left(\frac{1}{N_{c}^{2}}\right)} = -0.079 N_{c} + 0.0187 - \ln m + \mathcal{O}\left(\frac{1}{N_{c}}\right)$$

Figure: The low-energy constant \overline{l}_3 : recent lattice results from different collaborations, phenomenological estimates from (Leutwyler 2008) and our result.

Figure: The low-energy constant \overline{l}_4 : recent lattice results from different collaborations, phenomenological estimates from (Leutwyler 2008) and our result.

Low Energy Constants of γPT from the instanton vacuum

 F_{π}, M_{π}

Light quarks in the instanton background

Dynamical quark mass Quark condensate

$$F_{\pi}, M_{\pi}$$
 an $\overline{l}_3, \overline{l}_4$

Conclusion

Figure: *m*-dependencies of F_{π} , M_{π} : comparison with phenomenological data from (Leutwyler 2001)

Conclusion and outlook

M. Musakhanov

Introduction

- Chiral symmetry of QCD Chiral Lagrangian QCD instanton vacuum
- Light quarks in the instanton background
- Dynamical qu mass Quark condensate

 F_{π} , M_{π} ar I_3 , I_4

Conclusion

• We established a reliable theoretical framework for evaluation the ChPT low-energy constants with account of all $1/N_c$ corrections. $1/N_c$ corrections are important, esp. for \overline{l}_i .

- We evaluated the *m*-dependence of F_{π} , M_{π} and extracted the constants \overline{l}_3 , \overline{l}_4 . The found values are in reasonable agreement with lattice results and phenomenological estimates.
- The calculations of all other constants and the extension to the $N_f = 3$ case are on the way.