	Dedicated experiments 0000000	

The GPD experimental program at Jefferson Lab

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 Aubière, France

XIX International Baldin Seminar on High Energy Physics Problems Sep 29 - Oct 4, 2008

Carlos Muñoz Camacho

Introduction ●000	Dedicated experiments 0000000	
Motivation		

Studying the structure of the nucleon experimentally

Deep inelastic scattering

Form factors

Nobel prize, 1961

Carlos Muñoz Camacho

The GPD experimental program at Jefferson Lab

Parton distributions Nobel prize, 1969 Nobel prize, 1990

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Introduction 00●0	Dedicated experiments 0000000	
Motivation		

Generalized Parton Distributions

- Correlate between different partonic states
- Correlate momentum and position of partons
- Access to new fundamental properties of the nucleon

Contribution of the angular momentum of quarks to proton spin:

$$\frac{1}{2} = \underbrace{\frac{1}{2}\Delta\Sigma + L_z}_{J} + \Delta G \quad \Rightarrow \quad J = \frac{1}{2}\int_{-1}^{1} dx \, x[H(x,\xi,0) + E(x,\xi,0)]$$

DVCS cleanest process to access GPDs

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Introduction	Dedicated experiments	
Motivation		

DVCS experimentally: interference with Bethe-Heitler (BH)

At leading twist:

$$\begin{array}{lll} d^5 \ \overrightarrow{\sigma} \ -d^5 \ \overleftarrow{\sigma} \ &= & \Im m \left(T^{BH} \cdot T^{DVCS} \right) \\ d^5 \ \overrightarrow{\sigma} \ +d^5 \ \overleftarrow{\sigma} \ &= & |BH|^2 + \Re e \left(T^{BH} \cdot T^{DVCS} \right) + |DVCS|^2 \end{array}$$

- 11

$$\mathcal{T}^{DVCS} = \int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi+i\epsilon} + \dots =$$

$$\int_{-1}^{+1} dx \frac{H(x,\xi,t)}{x-\xi} - i\pi H(x=\xi,\xi,t)$$

Access in helicity-independent cross section

Carlos Muñoz Camacho

The GPD experimental program at Jefferson Lab

 \mathcal{P}

Access in helicity-dependent cross-section

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

+ . . .

The DVCS program at Jefferson Lab

- Hall A and Hall B both have a strong DVCS program
- Partially overlapping, partially complementary:
 - Hall A: high accuracy, limited kinematics
 - Hall B: wide kinematic range, limited accuracy
 - Very different systematics
- Jefferson Lab will be the only facility with a strong emphasis on DVCS/GPDs in the future (COMPASS at CERN?)
- The roadmap:
 - Early results (≈ 2000) from non-dedicated experiments (Hall B)
 - First round of dedicated experiments in Halls A/B in 2004/5
 - Second round on 2008–2010
 - ► Compeling DVCS program in Halls A/B at 11 GeV (≈2013-15)

Introduction 0000 Dedicated experiment 0000000 Near-future experiments (6 GeV) 000000 Conclusion

Non-dedicated DVCS results (Hall B)

A_{LU}: PRL 87, 182002 (2001)

- \blacktriangleright Both results show, with a limited statistics, a $\sin\phi$ behaviour
- Not fully exclusive

Carlos Muñoz Camacho

Introduction

Non-dedicated results

Dedicated experiments

Near-future experiments (6 GeV)

Conclusion

Hall A E00-110

E00-110 experimental setup

High Resolution Spectrometer

100-channel scintillator array

Carlos Muñoz Camacho

132-block PbF₂ electromagnetic calorimeter

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

	Dedicated experiments	

Hall A E00-110

E00-110 kinematic settings

Kin	Q^2	x_B	$ heta_e$	θ_{γ^*}	P_e
	$({\sf GeV}^2)$		(deg.)	(deg.)	(GeV)
1	1.5	0.36	15.6	22.3	3.6
2	1.9	0.36	19.3	18.3	2.9
3	2.3	0.36	23.9	14.8	2.3

Carlos Muñoz Camacho

	Dedicated experiments	
Hall A E00-110		

Exclusivity

Missing mass squared $ep \rightarrow e\gamma X$ (E00-110)

Exclusivity ensured by missing mass technique

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Introduction

Non-dedicated results

Dedicated experiments

Near-future experiments (6 GeV 000000

Hall A E00-110

DVCS cross section in the valence region (Hall A: E00-110)

- ► Helicity-dependent cross section (\$\vec{\sigma}\$ - \$\vec{\sigma}\$) at Q² = 1.5, 1.9 and 2.3 GeV².
- ► Helicity-independent cross section $(\vec{\sigma} + \vec{\sigma})$ at $Q^2 = 2.3 \text{ GeV}^2$ only.

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

	Dedicated experiments	
Hall A E00-110		

E00-110 results

Twist-2: dominant contribution

Contributions from BH², DVCS² and BH-DVCS interference

> Phys. Rev. Lett. **97**, 262002 (2006) Physics Today, March 2007

> > LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Carlos Muñoz Camacho

DVCS on the neutron: experiment E03-106 at JLab

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

tion Non-dedicated results

Dedicated experiments

Near-future experiments (6 GeV)

Hall A E03-106

DVCS on the neutron: experiment E03-106 at JLab LD₂ target $(F_2^n(t) \gg F_1^n(t) !)$

Main contribution for neutron

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Carlos Muñoz Camacho

	Dedicated experiments ○○○○○●	
Hall B E1-DVCS		

BSA in a large kinematic domain (Hall B)

Analysis of cross sections underway

Carlos Muñoz Camacho

BSA in a large kinematic domain (Hall B)

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

Target spin asymmetry A_{UL} (Hall B)

Not dedicated result:

Dedicated experiment running in Hall B early next 2009

Sensitivity to GPD \widetilde{H}

Other upcoming experiments (at 6 GeV):

- More DVCS on unpolarized proton
- DVCS on a transversely polarized target (conditionally approved)
- DVCS on nuclei (He⁴)

Carlos Muñoz Camacho

DVCS cross section has a very rich azimuthal structure:

- Azimuthal analysis allows the separation of the different contributions to I if DVCS² is negligeble.
- ▶ If DVCS² is important, \mathcal{I} and DVCS² terms **MIX** in an azimuthal analysis.
- The different energy dependence of \mathcal{I} and DVCS² allow a full separation.

Carlos Muñoz Camacho

LPC Clermont-Ferrand, CNRS/IN2P3 (France)

DVCS cross section has a very rich azimuthal structure:

- Azimuthal analysis allows the separation of the different contributions to *I* if DVCS² is negligeble.
- If DVCS² is important, \mathcal{I} and DVCS² terms **MIX** in an azimuthal analysis.
- The different energy dependence of \mathcal{I} and DVCS² allow a full separation.

Carlos Muñoz Camacho

E07-007: Rosenbluth-like DVCS²– \mathcal{I} separation in Hall A

- Clean separation of BH-DVCS intereference term from pure DVCS²
- Scaling test on the real part of the DVCS amplitude
- Rosenbluth separation of σ_L/σ_T for $ep \to ep\pi^0$

Introduction

Non-dedicated results

Dedicated experiments 0000000 Near-future experiments (6 GeV)

E08-025: DVCS/ π^0 on the neutron/deuteron

 $DVCS/\pi^0$ Rosenbluth separation on the neutron/deuteron

E08-025 experiment:

- Unpolarized cross section
- Rosenbluth separation

Recently approved to run simultaneously with E07-007

Future possibilities in Hall A

DVCS on the neutron at 12 GeV

- Extention to the full kinematic domain available with JLab at 12GeV
- ▶ R+D underway for a high luminosity ³He target

Recoil polarimetry (R+D)

- A full DVCS program requires proton polarization measurements
- Observables of proton recoil polarization in $\vec{e}p \rightarrow e\vec{p}\gamma$ are functionally equivalent to the observables $\vec{e}\vec{p} \rightarrow ep\gamma$ for polarized targets
- Conceptual design of a large acceptance recoil polarimeter (longitudinal and transverse proton polarization) under development

Summary and conclusions

- 1. DVCS BSA (Hall B/CLAS):
 - > Data in a large kinematical domain to compare to models
- 2. DVCS cross section difference (Hall A):
 - Strong evidence of twist-2 dominance (experimental program on solid ground)
 - Upper limit to higher twist effect ($\lesssim 10\%$)
 - First model-independent extraction of a combination of GPDs
- 3. DVCS Unpolarized cross section (Hall A):
 - ► Significant contribution of <u>both</u> DVCS and BH⇒ New experiment approved to separate each individual contribution
- 4. New exciting possibilities available at 12 GeV!

Carlos Muñoz Camacho