Thomas Jefferson National Accelerator Facility

1

Source size measurements in the eHe → e'p∧X reaction (for CLAS collaboration)

A.Stavinsky, <u>K. Mikhaylov</u>, A.Vlassov, B.Kerbikov, R.Lednicky <u>ITEP, Moscow</u>

OutLine

- Physics Motivation of pA femtoscopy
- STAR experimental results
- CLAS setup and experimental conditions
- Details of CLAS pA experiment
- Comparison with theory
- Conclusions

Physics motivation

 It was shown by Wang and Pratt that an enhancement of the pA correlation function at low relative momentum allows one to infer the size of the emitting source

[F. Wang and S. Pratt PRL 83,3138,1999]

 The low-energy p∧ parameters can be estimated using the Migdal-Watson approach to FSI (reformulated taking the Jaffe-Low P-Matrix).

[B.Kerbikov et al., Sov.J.Nucl.Phys. 43, 982 (1986), Nucl.Phys. A480, 585 (1988);

R.L.Jaffe and F.E.Low, Phys. Rev. D19, 2105 (1979)]

Our knowledge on p∧ interaction is far from being complete

Table 2: Λp scattering length and effective ranges in fm. The subscripts s and t correspond to spin singlet and triplet states, the first and second columns display the spinblind values

	a	r	a_s	a_t	r_s	r_t
[38]	-1.5		0			3 6
[39]	-1.8	2.8				
[40, 41]	-2.44	2.64				
[36]			-0.71	-2.18		
[36]			-2.51	-1.75		
[42]			-1.941	-1.858	3.570	3.133
[38]			-1.80	-1.23	1.73	2.29
[43]			-2.18	-1.93	3.19	3.35
[9]			-2.88	-1.66	2.92	3.78
[44]			-(2.4-2.6)	-(1.3-1.7)		
[37]			-2.59	-1.60	2.83	3.00

Contribution to the measured $p\Lambda$ c.f.

STAR: $p\Lambda$ ($p\Lambda$) correlation in central Au+Au collisions at Sqrt(s_NN)=200GeV

PRC 74, 064906 (2006)

Source size parameter: $r_0 (p\Lambda) = 3.09 \pm 0.3$ fm, $r_0 (p\Lambda) = 1.56 \pm 0.08$ fm

Drawback: Most Λ hyperons and protons are from the decay of hyperons (low "purity"):

TABLE III. Summary of the main fractions of pairs containing particles from particle decays included in $p-\Lambda$, $p-\overline{\Lambda}$, $\overline{p}-\Lambda$, and $\overline{p}-\overline{\Lambda}$ correlation functions assuming the absence of residual correlations. Λ_{Ξ} are Λ ($\overline{\Lambda}$) decay products of Ξ^- , Ξ^0 ($\overline{\Xi}^-$, $\overline{\Xi}^0$), Λ_{Σ^0} , are Λ ($\overline{\Lambda}$) decay products of Σ^0 ($\overline{\Sigma^0}$), p_{Λ} are p (\overline{p}) decay products of Λ ($\overline{\Lambda}$), p_{Σ^+} are p (\overline{p}) decay products of Σ^+ ($\overline{\Sigma^+}$), Λ_{prim} and p_{prim} represent primary Λ ($\overline{\Lambda}$) and p (\overline{p}). The remaining 29% represents misidentified p (\overline{p}) and reconstructed fake Λ ($\overline{\Lambda}$).

Pairs	Fractions (%)		
$p_{\rm prim}$ - $\Lambda_{\rm prim}$	15		
p_{Λ} - Λ_{prim}	10		
$p_{\Sigma^+} - \Lambda_{\text{prim}}$	3		
$p_{\rm prim}$ - Λ_{Σ^0}	11		
p_{Λ} - Λ_{Σ^0}	7		
$p_{\Sigma^+} - \Lambda_{\Sigma^0}$	2		
$p_{\rm prim}$ - Λ_{Ξ}	9		
$p_{\Lambda} - \Lambda_{\Xi}$	5		
$p_{\Sigma^+} - \Lambda_{\Xi}$	2		
$p_{\rm prim} - p_{\rm prim}$	7		

Jefferson Lab CLAS detector

Electromagnetic calorimeters Lead/scintillator, 1296 PMTs

Gas Cherenkov counters e/π separation, 216 PMTs

Lead/scintillator, 512 PMTs

Dctober 2008

7

Konstantin Mikhaylov et al.

CLAS experiment: pA interactions at low relative momentum

Reaction and run condition

- The reaction: $e^{3}He$, ${}^{4}He \rightarrow e'p\Lambda X$
- The data : e2a and e2b runs, 2430 millions triggers on ³He and 440 millions on ⁴He. The beam energy was 4.7 GeV and 4.46 GeV respectively.

Identification of Λ

- A-hyperons were identified by proton pion decay: $M(p\pi) = 1115.5 \pm 2MeV$
- Cuts: Vertex (target walls), track quality, same TOF, transferred energy v, missing mass (eHe \rightarrow e'pp π X)
- Proton momentum range : 0.3 to 2.0 GeV/c
- π momentum range : 0.1 to 0.7 GeV/c
- Due to kinematical restrictions (K-meson production at least) the minimal energy transferred (v) is not negligible.

Λ id: invariant mass of proton-pion

Λ id: subtract background

Measured corr. function: $\mathbf{R}_{p\Lambda+pp\pi} = \alpha \mathbf{R}_{p\Lambda} + (1 - \alpha) \mathbf{R}_{pp\pi}$, where $\alpha \approx 0.5$

Measured correlation function(LRC)

Close track efficiency correction

$p-p\pi$ contribution to $p\Lambda$

After correction on p-pπ contribution

p∧ source size

Fit of $p\Lambda$ correlation function by Lednicky Lednicky and Lyuboshitz analytical model [Sov. J. r₀=0.85 fm Nucl. Phys. 35, 770 (1982)]: 8 Two particle CF is given by CLAS preliminary square of wave function 7 r_o=1.20fm elastic transition $ab \rightarrow ab$ 6 averaged over distance r* of emitters [Gaussian dist 5 $d^{3}N/d^{3}r^{*} \sim exp(r^{*2}/4r_{0}^{2})$] ${\bf R}_{{\bf P}^{\Lambda}}$ and over spin projections •Scatt. length and effective 3 range (as in STAR fit): a^o=2.88 fm, a¹=1.66 fm, 2 d⁰=2.92 fm and d¹=3.78fm (0-singlet, 1-triplet) 0.3 0.1 0.2 0.4 0.5 0.6 n $q_{_{p\Lambda}}$, GeV/c

P-matrix

- The low-energy p∧ parameters using P-matrix (no source size problem)
- Jaffe and Law [PRD19(1979)2105] proposed the method (P-matrix) which serves as a link between the discrete states of the quark model and the scattering states in which quarks do not appear.

Conclusions

- The data show a narrow structure in the correlation function in the region of small relative momenta (q<0.2 GeV/c), which is in qualitative accordance with theoretical expectations.
- The important p-p π correlations were studied. It was shown that p-p π pairs in the region of mass p π around mass of lambda are correlated.
- The source size for strangeness production reaction proved to be consistent with one measured in semi-inclusive two proton production reaction.
- The proton-lambda correlation function is compatible with P-matrix fit of the hyperon-nucleon data.
- Small relative momentum $p\Lambda$ correlations both for He target and for electro-production reaction was studied for the first time.

Thank you for your attention!

Extra slides

Theoretical p∧ cor.fun.

-

Vertex cut

Figure 2: Vertex z-position distribution for reconstructed scattered electron in $e^4He \rightarrow e'pp\pi^-X$. Blue line corresponds to full target He run period. Green shadowed histogram is for empty run period normalized for tha same number of events at z=-8cm and z=3cm peaks. The red histogram corresponds to events which are taken into analysis.

Missing Mass

Figure 5: Missing mass squared distributions for reaction $e^3He(^4He) \rightarrow e'pp\pi^-X$. Black histogram is for all events, blue is for events from Λ -peak, and red-green is for events from Λ -peak with cut $\nu - \nu_{min} > 0.8$ GeV. Green histogram represents events accepted for the analysis.

Q^2 versus v

 ν - Q^2 plot for selected events which are taken into analysis.