Recent developments in NN and NY Interactions 10 New results in an old field HM FZ Jülich and Univ. Duisburg-Essen Why is this important?

NN interactions ← > Nuclear potential, nuclear structure
NY interactions ← > Hypernuclear potential, hypernuclear structure

Detectors: Big Karl+Ge-Wall

- focussing spectrometer ($\Omega = 10 \text{ msr}$)
- high resolution $\Delta p/p < 5 \times 10^{-5}$
- combined with detectors close to target:
- multi-layer Germanium detector GEM

Response of the GE Wall $\vec{d} + p \rightarrow p_1 + p_2 + n$

Particle identification

All possible interactions

		T = 0	$T = \frac{1}{2}$	T = 1	$T = \frac{3}{2}$	T=2	
	S = 0	NN		NN			
	S = -1		$(\Lambda N, \Sigma N)$		ΣN		
	$S = -2 (\Lambda$	$\Lambda, \Xi N, \Sigma \Sigma$)	$(\Xi N, \Sigma \Lambda, \Sigma \Sigma)$)	$\Sigma\Sigma$	
	S = -3		$(\Xi\Lambda,\Xi\Sigma)$		$\Xi\Sigma$		
	S = -4	ΞΞ		ΞΞ			
Q = -2	Q =	-1		Q = 0		Q = +1	Q = +2
$\frac{Q = -2}{S = 0}$	$Q = \cdot$	-1		$\frac{Q=0}{nn}$		Q = +1 np	Q = +2 pp
Q = -2 $S = 0$ $S = -1$	Q = - $\Sigma^{-} r$	-1 n	$(\Lambda n,$	$Q = 0$ nn $\Sigma^0 n, \Sigma^- p)$		$Q = +1$ np $(\Lambda p, \Sigma^+ n, \Sigma$	$Q = +2$ pp $0p$ Σ^+p
$Q = -2$ $S = 0$ $S = -1$ $S = -2 \ \Sigma^{-}\Sigma^{-}$	$Q = -\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n}$	-1 n $\Lambda, \Sigma^{-}\Sigma^{0}) (A$	$(\Lambda n, \ \Lambda \Lambda, \Xi^0 n, \Xi^- p$	$Q = 0$ nn $\Sigma^{0}n, \Sigma^{-}p)$ $p, \Sigma^{0}\Lambda, \Sigma^{0}\Sigma^{0},$	$\Sigma^{-}\Sigma^{+})$	$Q = +1$ np $(\Lambda p, \Sigma^{+}n, \Sigma$ $(\Xi^{0}p, \Sigma^{+}\Lambda, \Sigma^{0})$	$Q = +2$ pp $0p) \Sigma^+p$ $\Sigma^+\Sigma^+$
$Q = -2$ $S = 0$ $S = -1$ $S = -2 \ \Sigma^{-}\Sigma^{-}$ $S = -3 \ \Xi^{-}\Sigma^{-}$	$Q = -\frac{1}{2}$ Σ^{-n} $(\Xi^{-n}, \Sigma^{-\Lambda})$ $(\Xi^{-\Lambda}, \Xi^{0})$	-1 n $\Lambda, \Sigma^{-}\Sigma^{0}) (\Lambda^{-}, \Xi^{-}\Sigma^{0})$	$(\Lambda n, \ \Delta\Lambda, \Xi^0 n, \Xi^- p$ $(\Xi^0 \Lambda, \Xi$	$Q = 0$ nn $\Sigma^{0}n, \Sigma^{-}p)$ $p, \Sigma^{0}\Lambda, \Sigma^{0}\Sigma^{0},$ $\Xi^{0}\Sigma^{0}, \Xi^{-}\Sigma^{+})$	$\Sigma^{-}\Sigma^{+})$	$Q = +1$ np $(\Lambda p, \Sigma^{+}n, \Sigma$ $(\Xi^{0}p, \Sigma^{+}\Lambda, \Sigma^{0}$ $\Xi^{0}\Sigma^{+}$	$Q = +2$ pp $0p) \Sigma^+p$ $\Sigma^+\Sigma^+$

Isospin decomposition

nucleon-nucleon case

Two possibilities J=L+S: 0+1 or -1+2

hyperon-nucleon case

Problem

Often the target or the beam is not available or even impossible. Way out: three body final states with fsi (Watson+Migdal theory):

Works the factorisation always?

 $e + p \rightarrow e' + p + K^- + K^+$

Approximations

expansion $\frac{1}{a(k)} = \frac{1}{a} - k^2 \frac{r_{eff}}{2} + \dots$

Scattering length

 $\begin{aligned} |T(a+b \to 1+2+3)|^{2} &= |J_{ab}|^{2} |T_{0}|^{2} |J_{12}|^{2} |J_{23}|^{2} |J_{31}|^{2} \\ |T(p+p \to p+n+\pi^{+})|^{2} &= |J_{pp}|^{2} |T_{0}|^{2} |J_{pn}|^{2} |J_{p\pi}|^{2} |J_{p\pi}|^{2} |J_{\pi n}|^{2} \\ \approx |T_{0}|^{2} |J_{pn}|^{2} &= \frac{1}{4} |T_{0,s}|^{2} |J_{pn,s}|^{2} + \frac{3}{4} |T_{0,t}|^{2} |J_{pn,t}|^{2} \end{aligned}$

 T_{ij} can have a Breit-Wigner form $|J_{pn}|^2$ calculated by a nd r_{eff}

 $-a_0 \approx \lim_{k \to 0} \frac{\delta_0}{k}$

The ¹S₀ data

	nn	nn ^N	np	pp	pp ^N
-a (fm)	18.5	18.8	23.748	7.8063	17.3
	±0.3	±0.3	±0.009	±0.0026	±0.4
r _{eff} (fm)	2.75	2.75	2.75	2.794	2.85
	±0.11	±0.11	±0.05	±0.0014	±0.04

All scattering lengths are negative \rightarrow no bound state!

^{^{9}S} Effective Range Parameters

Potential	a(F)	$r_e(F)$	Р
нс	5.397	1.724	011
SC	5.390	1.720	027
SCA	5.390	1.720	027

The scattering length os positive \rightarrow bound state!

PROPERTIES OF THE DEUTERON					
Potential	E (MeV)	$Q\left(F^2 ight)$	$P_D(\%)$	A_D/A_S	
HC	2,22464	.2770	6.497	.02590	
SC	2,22460	.2796	6.470	.02622	
SCA	2.22464	.2762	6.217	.02596	

FSI approaches

A lot of studies made use of a Gauss potential. However the Bargman potential is the potential which has the effective range expansion as exact solution: a, $r \rightarrow \alpha$, β . α defines the pole position (positive \leftrightarrow bound, negative \leftrightarrow unbound).

$$|J_{Jost}|^{2} = \left(\frac{k - i\beta}{k + i\alpha}\right)^{2}$$
$$|J_{ER}|^{2} \propto \left(k^{2} + \frac{1}{a(k)^{2}}\right)^{-1}$$
$$|J_{FW}|^{2} = \frac{2\beta}{\alpha + \sqrt{\alpha^{2} + Q_{pp}m_{p}}}$$

All with Gamow factor

The nn-case

 $n + n \rightarrow n + n$

Planned (pulsed reactor, spallation neutron sources)

$n+d \rightarrow n+n+p$

fsi nn and np, Fadeev equations Bonn: a_{nn} =-16.1±0.4 fm Duke: a_{nn} =-18.7±0.7 fm

However: both groups agree on a_{nn}

The nn-case (II)

$$\pi^- + d \rightarrow n + n + \gamma$$
 $a_{nn} = -1$

 a_{nn} =-18.5±0.4 fm

However: theory required, yielding ± 0.3 fm uncertainty. Recently, Garstedig (N3Lo): ± 0.05 fm

Planned:

 $\mu^- + d \rightarrow n + n + \nu_{\mu}$

The pp-case

Elastic pp scattering, Coulomb force seems to be well under controle: $a_{pp} = -7.83$ fm However: an IUCF group

$$p + p \rightarrow p + p + \pi^0$$

Claimed "...the data require a_{pp} =-1.5 fm." They questioned the validity of the factorization.

Experiment at GEM, differential and total cross sections.

Dalitz plot

 $p + p \rightarrow p + p + \pi^0$

Modell

$$\frac{d\sigma}{dQ} = \frac{1}{4sp_i^*} |T(Q)|^2 \rho_3(Q)$$

$$|T_{Ss}|^2 = |T_{00}|^2 |T_{FSI}|^2$$

$$T_{L_{i},Ll} = \sqrt{a_{L,l}} < j_{L}(pr)j_{l}(qr/2) | V(r) | j_{Li}(p_{p}^{*}r) > V(r) = e^{-\mu r} / r$$

All with Gamow factor

Differential x-sections

FIT Ss, Pp (Ps from polarisation experiments)

blue: no Δ resonance

red: with Δ resonance, usual fsi

black: with Δ but fsi with half the usual pp scattering length

No need for a change of the scattering length!

The np case

The only case with two possible isospin states.

The only case with a bound state: the deuteron. The spin singlet state was never observed in the deuteron. Where should be the spin singlet state (= isospin triplet state)?

Connection bound-continuum

Fäldt & Wilkin derived a formula (for small k)

$$|\Psi_k(r)|^2 \approx \frac{2\pi}{\alpha \left(k^2 + \alpha^2\right)} |\Psi_\alpha(r)|^2$$

From this follows, that from a the cross section of a known pole (bound or quasi bound) the continuum cross section is given $[N(d) \rightarrow N(pn)_t \rightarrow \xi N(pn)_s]$.

The fsi is large for excitation energies Q of only a few MeV.

type	pro	contra
single arm	absolute normalization of the triplet fraction	contamination from deuteron
double arm	no contamination from deuteron	no absolute normalization

best: an experiment avoiding the con's. \rightarrow high resolution single arm

$d+p\rightarrow p+(pn)$

Saclay (unpublished)

Dubna

Saclay $d+p \rightarrow p+(pn)$

Saclay pp $\rightarrow \pi^+$ (pn) 1000 MeV

New data Uppsala

New data Uppsala and GEM

p=1642.5 MeV/c

Triplet FSI absolute

Singlet FSI absolute

Full spectrum

singlet fraction	Ref.
0.40±0.05	Boudard et al.
< 0.10	Betsch et al.
<0.10	Uzikov & Wilkin
< 0.10	Abaev et al.
< 0.003	this work

Why is there no singlet state?

- •first high resolution measurement allowing to study the threshold region of the d break up
- •fixed cross section for the unbound triplet state
- the upper limit for the singlet break up contribution was reduced by a factor of 3
- •the ratio for unbound to bound state is $< (1.9 \pm 0.5) \times 10^{-3}$

More experiments

Scaling factor

Full 3 body calculation

Relativistic phase space

Reid soft core

Full 3 body calculation

Relativistic phase space

Reid soft core, no tensor force, no d-state in the deuteron.

It's not the tensor force!

What is it then?

Ap elastic scattering

378+224 events in a 82 cm bubble chamber

	as	rs	a _t	r _t
А	-2.0	5.0	-2.2	3.5
В	0	0	-2.3	3.0
F	-8.0	1.5	-0.6	5.0

AN interaction

		a _s (fm)	r _s (fm)	$a_{\rm t}$ (fm)	$r_{\rm t}~({\rm fm})$
Iülich	A	-1.56	1.43	-1.59	3.16
	Ã	-2.04	0.64	-1.33	3.91
models	B	-0.56	7.77	-1.91	2.43
	B	-0.40	12.28	-2.12	2.57
murecen	D	-1.90	3.72	-1.96	3.24
	F	-2.29	3.17	-1.88	3.36
	NSC	-2.78	2.88	-1.41	3.11
mwcych					

model

Nij

No bound state!

рр→К+Ар

FSI parameters of the Ap system

 $|\mathbf{J}_{\mathrm{s}}| = |\mathbf{J}_{\mathrm{t}}|$

a _s	r _s	a _t	1 ^t
-3.2	1.25	-1.3	5.4

F. Hinterberger and A. Sibirtsev, Eur. J. Phys. A 21 (2004) 313 Data from Nucl. Phys. A 567(1994) 819

FSI parameters of the Ap system

 $p+p \rightarrow X$

$P_{beam} = 2735 \text{ MeV/c}$ $p_{BK} = 1070 \text{ MeV/c}$

p(p,X)

P_{beam}=2735 MeV/c p

 $p_{BK} = 1070 \text{ MeV/c}$

Peak below $p\Sigma^0$ threshold

Brown et al., NP B 124(1977)45

K⁻d→ Λ pπ⁻ 5 Exp. (4 in flight, 1 stop) n¹²C→ Λ pX pp→ Λ pK⁺ -New resonance? - bound state? Excluded -ΣN→ Λ p FSI, mixing?

All $\Lambda\Lambda$ **experiments**

year	Ref.	K^-	stops	$B_{\lambda\Lambda}$ (MeV)	$\Delta B_{\lambda\Lambda}$ (MeV)
1963	Danycz et al.				
	$^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}Be + p + \pi^-$	10^{5}	≈ 2	$17.7 {\pm} 0.4$	$4.3{\pm}0.4$
	$\rightarrow \alpha + \alpha + p + \pi^-$				
1965	Prowse et al.				
	$^6_{\Lambda\Lambda}He \rightarrow^5_{\Lambda}He + p + \pi^-$	10^{6}	≈ 30	$10.9 {\pm} 0.8$	$4.7{\pm}1.0$
	$\rightarrow \alpha + p + \pi^-$				
1991	Aoki et al.	10 ⁹	80		
	$^{10}_{\Lambda\Lambda}Be \rightarrow^9_{\Lambda}B + \pi^-$			8.5 ± 0.7	-4.9 ± 0.7
	$\rightarrow^3 He + \alpha + p + n + n$				
	OR				
	${}^{14}_{\Lambda\Lambda}C^* + n \rightarrow {}^{13}_{\Lambda\Lambda}B + p + n$			$27.5{\pm}0.7$	$4.8 {\pm} 0.7$
	$ ightarrow^{13}_{\Lambda} C + \pi^-$				
	$\rightarrow^3 He + \alpha + \alpha + n + n$				
2001	Takahashi et al.				
	$^{12}C+\Xi^-\rightarrow^6_{\Lambda\Lambda}He+\alpha+t$			$7.25{\pm}0.19^{+0.18}_{-0.11}$	$1.01{\pm}0.20^{+0.18}_{-0.11}$
	$^{5}_{\Lambda}He+p+\pi^{-}$				

$$K^{-} + p \rightarrow K^{+} + \Xi^{-}$$
$$\Xi^{-} + p \rightarrow \Lambda + \Lambda$$

Event Nagara

Theory: $\Lambda\Lambda$ **interaction**

All information from 3 $\Lambda\Lambda$ hypernuclei (${}^{4}_{\Lambda\Lambda}H$ observed):

Is there a bound Di Lambda or even a H_dibaryon? Latter excluded with 2.136 < M (H) < 2.231 GeV

Search for H-dibaryon

Yamamoto et al., PLB 478(2000) 401

To be confirmed at PANDA

 $\overline{e^+e^-} \to J/\Psi(\Psi') \to p\overline{\Lambda}(\overline{p}\Lambda)$

+c.c.

Ablikim et al. (BES) PRL $M_{res}=2075\pm12$ MeV $\Gamma=90\pm35$ MeV 7 σ effect

Future experiments

- J-PARC more intense K⁻ beam
- FAIR stopped anti-protons (Kilian, FLAR)

 $\overline{p} + p \rightarrow K^{*-} + K^{*+}$ with very small momenta $K^{*-} + p \rightarrow K^{+} + \Xi^{-}$ again small momenta, large probability for $\Xi^{-} + p \rightarrow \Lambda + \Lambda$

GEM Collaboration

A. Budzanowski, A. Chatterjee, R. Gebel, P. Hawranek, R. Jahn, V. Jha,
K. Kilian, S. Kliczewski, Da. Kirillov, Di. Kirillov, D. Kolev, M. Kravcikova,
M. Lesiak, J. Lieb, H. Machner, A. Magiera, R. Maier, G. Martinska,
S. Nedev, J. Niskanen, N. Piskunov, D. Prasuhn, D. Protic, J. Ritman,
P. von Rossen, B. J. Roy, I. Sitnik, R. Siudak, R. Tsenov, J. Urban,
G. Vankova, C. Wilkin

pp effective range

$$C^{2}k \cot \delta + 2k\eta h(\eta) = -1/a + \frac{1}{2}r_{e}k^{2} - Pr_{e}^{3}k^{4}$$

where

$$egin{aligned} C^2 &= 2\pi\eta/(e^{2\pi n}-1)\ \eta &= Me^2/(2\hbar^2k) \end{aligned}$$

$$h(\eta) = -\gamma - \log \eta + \eta^2 \sum_{m=1}^{\infty} [m(m^2 + \eta^2)]^{-1}$$
 and $\gamma = .5772 \cdots$

¹S Effective Range Parameters Including Coulomb Effects

Potential	a(F)	$r_e(F)$	Р
НС	-7.75	2.78	.024
SC	-7.78	2.72	.028
SCA	—7.77	2.72	.027