XIX International Baldin Seminar on High Energy Physics Problems

Dielectron production in pp and dp collisions at 1.25 GeV/u with HADES

Kirill Lapidus, INR Moscow for the HADES Collaboration

October 2008 Dubna

Outline of the talk

- **1. HADES experiment**
- 2. Elementary collisions: what's peculiar?
- **3. Experimental results**
- 4. Physical interpretation and discussion
- 5. Summary

Experimental observables in nuclear collisions: dileptons

Features of electromagnetic probes

- ✓ Produced during all stages of collision
- ✓ Do not interact strongly
- ✓ Kinematical characteristics are not disturbed by surrounding media

HADES experiment

Location: GSI, Darmstadt

<u>Ultimate goal</u>: study of chiral symmetry restoration at non-zero μ_B

<u>Program</u>: vector meson spectroscopy and study of elementary channels, investigation of dilepton production in heavy ion colissions

HADES (SIS 18): 1-2 AGeV $\rho/\rho_N = 1-3$ T < 80 MeV "resonace matter"

High Acceptance Dielectron Spectrometer

Pair acceptance

 ≈ 0.24 (0.35) Full azimuth, polar angles 18°-85°

Particle identification:

RICH: CsI solid photocathode, C_4F_{10} radiator **Time Of Flight:** Scintillator paddles \rightarrow MUL limitation θ <45⁰, RPC from 2009 **Pre-Shower:** pad chambers & lead converter

Momentum measurement

 $\begin{array}{ll} \mbox{Magnet:} & B\rho = 0.36 \mbox{ Tm} \\ \mbox{MDC:} \ 24 \ \mbox{Midi} \ \mbox{Drift} \ \mbox{Chambers,} \\ single-cell \ resolution \approx 140 \ \mbox{\mu m} \end{array}$

Lepton Identification with HADES

HADES Experimental Program

<u>AA</u>

<u>NN</u>

2002 ¹²C+¹²C 2 AGeV

2004 ¹²C+¹²C 1 AGeV

2005 Ar+KCI 1.76 AGeV

2004 p+p 2.2 GeV

2006 p+p 1.25 GeV

2007 d+p (n+p) 1.25 AGeV

2007 p+p 3.5 GeV

HADES Experimental Program

Nucleus-nucleus collisions at 1 GeV/u

R. J. Porter *et al.*, Phys. Rev. Lett. 79 (1997) 1229.

G. Agakishiev *et al.*, Phys. Lett. B 663 (2008) 43.

Nucleus-nucleus collisions at 1 GeV/u

Discrepancy of the data with cocktail of long lived components (mainly eta):

established by DLS, confirmed by HADES (results agree)

excess factor Y_tot/Y_eta = 6.8

Study of elementary collisions

Origin of the excess?

Specific nuclear environment effects? Poor knowledge of NN contribution?

Need to study elementary reactions in this energy regime

2006: p + p 1.25 GeV 2007: d + p 1.25 GeV/u (tagging of QF np)

Note: eta production threshold is 1.27 GeV

np bremsstrahlung

Promising candidate: neutron-proton bremsstrahlung

- Radiation of (virtual) photon in NN scattering
- sigma_np >> sigma_pp
- recent theoretical consideration by L.P. Kaptari and B. Kämpfer, NPA 764 (2006) 338, gives much bigger cross section than previous calculations
- no definitive predictions, see also R. Shyam and U. Mosel, PRC 67 (2003) 065202

Bottomline:

np-brem *predicted to be* very important process in context of pair production at energies ~1 GeV/u Need for experimental study

quasi-free np reaction within IA

spectator p: small angles (p_t), $p \sim p_d/2$

reaction p: larger angles (p_t), p < $p_d/2$

np selection:

need to register spectator proton in very forward direction

dp experiment with Forward Wall

Forward Wall

Scintillator hodoscope located 7 meters downstream the target

Information from the Wall:

- 1. Time of flight
- 2. Coordinate of the fired cell
- 3. TAT ~ dE/dx

FW acceptance to spectator protons

QF np: raw pair spectra

Note: ~2200 pairs above pi0 Nice S/B ratio FW cuts (np selection):

- 1. fwMult > 0
- 2. search for particle with

1.6 GeV < p < 2.6 GeV

Pair cuts:

- 1. no double hit
- 2. openangle > 9.
- 3. closestnonfitted cuts
- 4. RKchi2 < 100000.

BG: arithmetical mean

<u>Normalization</u>: Nel = 5.41E+9 sigma_ppel = 22.1 mb sigma_pi = 8 + 0.56 mb Npi = 2.1E+9

np versus pp (efficiency corrected)

np versus pp (efficiency corrected)

T. Galatyuk analysis

Comparison with PLUTO* cocktails

*PLUTO — Monte Carlo event generator arXiv:0708.2382 [nucl-ex]

20

Comparison with PLUTO* cocktails

A. pp data is almost saturated by delta Dalitz

B. np shows strong excess over delta + subthreshold eta

C. clear need for additional sources: np-brem, excitation of resonances

*PLUTO — Monte Carlo event generator arXiv:0708.2382 [nucl-ex]

Preparing experimental cocktail

Mean of properly scaled yields in pp and np versus CC data

Overlap suggests that the observed yield in CC is caused by np channel

Absence of extra dilepton sources in nucleus collisions at this energy regime?

Summary

- 1. First measurement of dilepton production in QF np
- 2. np/pp: strong isospin dependence of the pair yield
- 3. np data can't be described by conventional cocktail
- 4. Experimental cocktail saturate C+C data

Outlook:

1. Extracting additional sources:

np bremsstrahlung, resonance contribution

2. Differential analysis with Wall

G. Agakishiev⁸, C. Agodi¹, A. Balanda^{3,e}, G. Bellia^{1,a}, D. Belver¹⁵, A. Belyaev⁶, J. L. Boyard¹³, P. Braun-Munzinger⁴, P. Cabanelas¹⁵, A. Blanco², M. Böhmer¹¹, E. Castro¹⁵, S. Chernenko⁶, T. Christ¹¹, M. Destefanis⁸, J. Díaz¹⁶, F. Dohrmann⁵, A. Dybczak³, T. Eberl¹¹, L. Fabbietti¹¹, O. Fateev⁶, P. Finocchiaro¹, P. Fonte^{2,b}, J. Friese¹¹, I. Fröhlich⁷, T. Galatyuk⁴, J. A. Garzón¹⁵, R. Gernhäuser¹¹, A. Gil¹⁶, C. Gilardi⁸, M. Golubeva¹⁰, D. González-Díaz⁴, E. Grosse^{5,c}, F. Guber¹⁰, M. Heilmann⁷, T. Hennino¹³, R. Holzmann⁴, A. Ierusalimov⁶, I. Iori^{9,d}, A. Ivashkin¹⁰, M. Jurkovic¹¹, B. Kämpfer⁵, K. Kanaki⁵, T. Karavicheva¹⁰, D. Kirschner⁸, I. Koenig⁴, W. Koenig⁴, B. W. Kolb⁴, R. Kotte⁵, A. Kozuch^{3,e}, A. Krása¹⁴, F. Krizek¹⁴, R. Krücken¹¹, W. Kühn⁸, A. Kugler¹⁴, A. Kurepin¹⁰, J. Lamas-Valverde¹⁵, S. Lang⁴, J. S. Lange⁸, K. Lapidus¹⁰, L. Lopes², M. Lorenz⁷, L. Maier¹¹, A. Mangiarotti², J. Marín¹⁵, J. Markert⁷, V. Metag⁸, J. Micel⁷, B. Michalska³, D. Mishra⁸, E. Morinière¹³, J. Mousa¹², C. Müntz⁷, L. Naumann⁵, R. Novotny⁸, J. Otwinowski³, Y. C. Pachmayer⁷, M. Palka⁴, Y. Parpottas¹², V. Pechenov⁸, O. Pechenova⁸, T. Pérez Cavalcanti⁸, J. Pietraszko⁴, W. Przygoda^{3,e}, B. Ramstein¹³, A. Reshetin¹⁰, M. Roy-Stephan¹³, A. Rustamov⁴, A. Sadovsky¹⁰, B. Sailer¹¹, P. Salabura³, A. Schmah⁴, R. Simon⁴, Yu.G. Sobolev¹⁴, S. Spataro⁸, B. Spruck⁸, H. Ströbele⁷, J. Stroth^{7,4}, C. Sturm⁷, M. Sudol⁴, A. Tarantola⁷, K. Teilab⁷, P. Tlusty¹⁴, M. Traxler⁴, R. Trebacz³, H. Tsertos¹², I. Veretenkin¹⁰, V. Wagner¹⁴, H. Wen⁸, M. Wisniowski³, T. Wojcik³, J. Wüstenfeld⁵, S. Yurevich⁴, Y. Zanevsky⁶, P. Zhou⁵, P. Zumbruch⁴

¹ Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali del Sud, 95125 Catania, Italy

- ² LIP-Laboratório de Instrumentação e Física Experimental de Partículas , 3004-516 Coimbra, Portugal
- ³ Smoluchowski Institute of Physics, Jagiellonian University of Cracow, 30-059 Kraków, Poland
- ⁴ Gesellschaft f
 ür Schwerionenforschung mbH, 64291 Darmstadt, Germany
- ⁵ Institut für Strahlenphysik, Forschungszentrum Dresden-Rossendorf, 01314 Dresden, Germany
- ⁶ Joint Institute of Nuclear Research, 141980 Dubna, Russia
- ⁷ Institut f
 ür Kernphysik, Johann Wolfgang Goethe-Universit
 ät, 60438 Frankfurt, Germany
- ⁸ II.Physikalisches Institut, Justus Liebig Üniversität Giessen, 35392 Giessen, Germany
- ⁹ Istituto Nazionale di Fisica Nucleare, Sezione di Milano, 20133 Milano, Italy
- ¹⁰ Institute for Nuclear Research, Russian Academy of Science, 117312 Moscow, Russia
- ¹¹ Physik Department E12, Technische Universität München, 85748 München, Germany
- ¹² Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
- ¹³ Institut de Physique Nucléaire (UMR 8608), CNRS/IN2P3 Université Paris Sud, F-91406 Orsay Cedex, France
- ¹⁴ Nuclear Physics Institute, Academy of Sciences of Czech Republic, 25068 Rez, Czech Republic
- ¹⁵ Departamento de Física de Partículas, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ¹⁶ Instituto de Física Corpuscular, Universidad de Valencia-CSIC, 46971 Valencia, Spain

Additional slides

QF np: efficiency corrected spectra

Efficiency correction based on apr06 pp data

Minimum efficiency cut applied: 5% for single leg

F_LVL2 = 0.85 F_FW = 0.84

Systematic error from Wall: < 10%

- 1. registration efficiency
- 2. time resolution

Angular distributions: comparison with PLUTO

Note: absolute normalization!

Scaling factor for massive pairs

Spectator tagging is under control

Correlation with Wall: II. Polar angle

Spectra measured at very small FW angles shows same pair excess!

Experimental tests of IA

Experimental tests of IA: HADES data

np/pp channels separation

PLUTO proton momentum distributions from np and pp channels (within Wall acceptance, smeared by time resolution)

Selection of optimal momentum window to purify np

Acceptance to np/pp reactions and purity of resulting spectra

