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GE ≡ GE(q2) and GM ≡ GM(q2) - form factors

eN → eN

The nucleon form factors (NFFs) are fundamental observables

• NFFs are used in calculations of the e.m. properties of more
complicated objects (the deuteron, 3He, 4He, etc.)

• NFFs give information about structure of the nucleon.

– Size of the nucleon Q2 ≡ −q2 ≪ m2
N

– Quark counting rules, pQCD, etc. Q2 ≡ −q2 ≫ m2
N



Rosenbluth separation method
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Recoil polarization

A.I.Akhiezer and M.P.Rekalo, Dokl. Akad. Nauk SSSR (1968)
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The precision level of present-day electron-proton scattering
experiments makes it necessary to

take into account effects beyond Born approximation

Are factorized out dσ = dσ(1)[1 + δ(q2)]

Destroy the Rosenbluth formula



Second order diagrams

• Scattering amplitude

M =
4πα

q2
ū′γµu · Ū ′

(
γµF̃1 −

1

4M
[γµ, q̂]F̃2 +

P µ

M 2
K̂F̃3

)
U

depends on three amplitudes (form factors) F̃1, F̃2. and F̃3

• The amplitudes are functions of two variables,

q2 and ε = [ν2 + t(4M 2 − t)]/[ν2 − t(4M 2 − t)].

• The form factors are complex.

The real part of the amplitude contributes to
the reaction cross section

The imagine part of the amplitude determines
SINGLE SPIN ASYMMETRIES.



Single spin asymmetry

eN → eN

k

k

k′

k′

P ′

P ′

σ↑ =

σ↓ =

Normal spin asymmetry

An =
σ↑ − σ↓
σ↑ + σ↓

There are two types of the normal
spin asymmetries, related to spins of

the four particles in the reaction

• Target spin asymmetry, An.

• Beam spin asymmetry, Bn.



It has been known for a long time that the 2γ exch.
can generate single-spin normal asymmetry

• N.F. Mott, Proc. R. Soc. London, Ser.A124,
425 (1929) Noted that asymmetry is due to spin-orbit
coupling in the Coulomb scattering of electrons

• N.F. Mott, Proc. R. Soc. London, Ser.A135,
429 (1935) Spin asymmetry of beam electron

• A.O. Barut and C. Fronsdal, 1960

• F.Guerin and C.D. Picketty, 1964

• ... 70-th

1965—70: Attempts to measure such effects were done, but
only upper limit for the target and recoil proton spin asym-
metry were reported.

2001—04: First measurements of the Bn were done by SAM-
PLE Coll. (MIT/Bates) and MAMI/A4 Coll. (Mainz).



σ↑ ∼ |〈k′P ′|T |kP ↑〉|2, σ↓ ∼ |〈k′P ′|T |kP ↓〉|2

|〈k′P ′|T |kP ↓〉|2 = |〈kP ↑ |T |k′P ′〉|2 = |〈k′P ′|T+|kP ↑〉|2

σ↑ − σ↓ ∼ 1
2
〈k′P ′|T − T+|kP ↑〉〈kP ↑ |T + T+|k′P ′〉 + c.c. ∼ ℑmT2γ

i(Tfi−
∗
T if) =
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∗
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2 ℑm = + O(α3)

k k′

P P ′

×

k k′′

Σ
n

P ′′P

k′k′′

P ′′ P ′



• Single asymmetries An and Bn disappear in the
1γ-exch.

• The asymmetries are proportional to the Im part
of the 2γ-exch., which is simpler to theoretical
analysis that the Re part of the 2γ-exch.

– From the unitarity it is related to the electro-
production amplitudes

– All intermediate particles are on the mass
shell

– Electroproduction amplitudes can be taken
from experiment



Target Spin Normal Asymmetry

An



A =
iαq2

2π2D

s∫

M2

s − W 2

8s
dW 2

∫
dΩ′′ 1

q2
1q

2
2

Lαµν
∑

λp,λ′p

Wµν(P
′λ′

p; Pλp)ūλp(P )(−γ5ŜΓα)uλ′p(P
′)

where γ5Ŝ ≡ γ5γµSµ is the operator of spin projection

Sµ = Aǫµνστk
νP σP ′τ S2 = −1

D =
16((s − M 2)2 + sq2)

4M 2 − q2
(4M 2G2

E − q2G2
M) + 8q4G2

M

Lαµν = Tr(k̂′γµk̂′′γνk̂γα)

The electron mass m = 0

Wµν(P
′λ′

p; Pλp) = (2π)4
∑

h

δ(P +k−P ′′−k′′)〈P ′λ′
p|Jµ|h〉〈h|Jν|Pλp〉



Models for Wµν

• h = proton, elastic contribution [A.J.G Hey, 1971]

• C.-B. inequality estimate

∑

h

|〈P ′λ′
p|Jµ|h〉〈h|Jν|Pλp〉| ≤

(
∑

h

|〈P ′λ′
p|Jµ|h〉|2

∑

h

|〈h|Jν|Pλp〉|2
)1/2

[A. De Rujula, J.M. Kaplan and E. de Rafael, 1972]

• partonic calculations at large Q2 [A. Afanasev et al., 2003]

• h = N and πN [B. Pasquini and M. Vanderhaegen, 2004]

D.Borisyuk and A.K. Phys. Rev. C 72 035207 (2005):
contribution of resonances

1st res. region - P33(1232)

2nd res. region - D13(1520), S11(1535)

3rd res. region - many resonances. We include
F15(1680) only

And also P11(1440)



Electroproduction amplitudes
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For a stable particle (e.g. proton):
∑

h
′(2π)3δ(P + q − P ′′) = δ(W 2 − M 2)

For the resonance: δ(W 2 − M 2
R) → ΓRMR

π
1

(W 2−M2
R)2+M2

RΓ2
R

∑

h

′
(2π)3δ(P +q−P ′′)f (h)(q2

1)
∗
f (h)(q2

2) →

f (p)(q2
1)

∗
f (p)(q2

2)δ(W 2 − M 2) +
∑

R

f (R)(q2
1)

∗
f (R)(q2

2)
ΓRMR

π

1

(W 2 − M 2
R)2 + M 2

RΓ2
R

f
(p)
1 (q2) ≡ 0, f

(p)
0 (q2) = 2MGE(q2), f

(p)
−1 (q2) = −GM(q2)

√
−2q2

f1 ∼ A3/2, f−1 ∼ A1/2, f0 ∼ S1/2



Numerical results, resonances contribution
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Numerical results
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• The ∆(1232) contribution is dominant among
other resonances

• The contribution of the Roper resonance was
obtained to be not negligible

• The contributions from the ∆ and other res-
onances have mostly opposite sign and tend
to cancel each other, especially at high beam
energy, so the asymmetry is defined mostly
by proton contribution



Beam Spin Normal Asymmetry

Bn

D.Borisyuk and A.K., Phys. Rev. C 045210 (2006)
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k k′
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q1 q2

P P ′P ′′

Bn =
iαq2

2π2D

∫
d3k′′

2ǫ′′
1

q2
1q

2
2

Lαµν
∑

λp,λ′p

Wµν(P
′λ′

p; Pλp) 〈Pλp|Γα|P ′λ′
p〉

Hadronic tensor: Wµν(P
′λ′

p; Pλp) =
∑

h(2π)4δ(P +k−P ′′−k′′)〈P ′λ′
p|Jµ|h〉〈h|Jν|Pλp〉

Leptonic tensor:Lαµν = −Tr
{

(k̂′ + m)γµ(k̂′′ + m)γν(k̂ + m)γ5Ŝγα
}
∼ m !!!

• Contrary to the TNSA An, the BNSA Bn vanishes in the m → 0 limit.

– We cannot neglect m completely

– Instead we will systematically neglect o(m) terms.

• Bn contains logarithmic and double-logarithmic terms

∼ m ln
Q2

m2
and ∼ m ln2 Q2

m2
,

which is not the case for An.



I = m

∫
d3k′′

2ǫ′′
1

q2
1q

2
2

Y (W, q2
1, q

2
2) + o(m).

• If we put m = 0 in the integrand, the integral will have
two types of singularities:

– When q2
1 → 0, but q2

2 is finite or vice versa, q2
2 → 0,

but q2
1 is finite

– When W → Wmax, i.e. both q2
1 and q2

2 → 0

• For m 6= 0 the integral is nonsingular, |q2
1|max =

|q2
2|max ∼ m. Those “singularities” result in the above-

mentioned ln Q2

m2 and ln2 Q2

m2 terms.

If Q2 = 0.25 GeV2, then ln2 Q2

m2 ≈ 200

Ỹ = Y − Y0. After

that we integrate each addendum separately, neglecting the terms which are
zero in the m → 0 limit.



∫
d3k′′
2ǫ′′

1
q2
1q

2
2
Y (W, q2

1, q
2
2) ≈ πY0(

√
s)

4Q2 ln2 Q2

m2

Approx. of leading Logs

Y0(
√

s) = Y (
√

s, q̃2
1, q̃

2
1)

where q̃2
1 = q̃2

2 = −2m(ǫ − m) ≈ 0.



The photons are very close to real photons

Wµν(P
′λ′

p; Pλp) =
∑

λ,λ′=±1

ε
(2λpλ)
1ν

∗
ε

(2λ′pλ′)
2µ

∑

h

′
(2π)4δ(P + k − P ′′)f (h)

λ (0)
∗
f

(h)
λ′ (0)×

× η
λp−λ′p
h D(sh)

λp(2λ+1),λ′p(2λ′+1)(0, θ, 0)

∑

h

′
(2π)3δ(P +k−P ′′)f (h)

λ (0)
∗
f

(h)
λ′ (0) →

→ 4W |~kπ|
πα

|E0+(W )|2δλ,−1δλ′,−1 +
∑

R

f
(R)
λ (0)

∗
f

(R)
λ′ (0)

ΓRMR

π

1

(W 2 − M 2
R)2 + M 2

RΓ2
R



VALIDITY OF THE APPROXIMATION

Taking into account

Dλ′λ(0, θ, 0) ∼
(

sin
θ

2

)|λ−λ′|
∼ Q|λ−λ′|, at θ → 0,

one gets

B(ln2)
n ∼ Q3 ln2 Q2

m2

This is valid if

sin2 θ

2
ln

Q2

m2
≫ 1



ALTERNATIVELY

For the condition

sin2 θ

2
ln

Q2

m2
≪ 1

one has to look for the terms with the lowest power of Q in the limit of
forward scattering. As a result one has

Bn ≈ B(ln1)
n = −2m(s − M 2)2

π2D

(
GE + Q2

4M2GM

)
Q ln

Q2

m2
σtot,

where σtot is the total photoabsorbtion cross-section.

(Afanasev and Merenkov; Borislyuk and Kobushkin)



e− + p → e− + p
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The following resonances were taken into account:
∆(1232), D13(1520), S11(1535)



THE REAL PART

The problem

One does not know the γ∗NN-vertex if one of the nucleon is out of
mass shell

Γµ(q2; p2 = M 2, p′2 6= M 2) 6= γµF1(q
2) − 1

4M
F2(q

2)[γµ, q̂]

The uncertainty of these FFs is believed to be the main source of
theoretical uncertainty in TPE calculations.

We develop the approach which is based on the dispersion rela-
tions.

—At first, the absorptive part of the amplitude is calculated using
unitarity. Thus only “on-shell” FFs are needed to evaluate it.
—Then the whole amplitude is reconstructed by dispersion rela-
tions.

D.Borisyuk and A.K., Phys. Rev. C 78 025208 (2008)
C 75 038202 (2007)



THE MAIN STEPS OF THE CALCULATIONS

The zero step

The general expression for the scattering amplitude

M =
4πα

q2
ū′γµu · Ū ′

(
γµF̃1 −

1

4M
[γµ, q̂]F̃2 +

P µ

M 2
K̂F̃3

)
U

We introduce the new set of amplitudes

GE = F̃1 − τF̃2 + νF̃3/4M 2

GM = F̃1 + F̃2 + ενF̃3/4M 2

G3 = νF̃3/4M 2

GE = GE + O(α) GM = GM + O(α) G3 ∼ α

P = 1
2(p + p′) K = 1

2(k + k′) t = q2 ν = s − u = 4PK



The first step

We need amplitudes, free from kinematical u and s singularities and zeros.
The helicity amplitudes of the process e−e+ → pp̃ are

T++ = 4πα · 2i cos2 θ/2
(√

τ (1 + τ )F̃3 + F̃m + νF̃3/4M 2
)

,

T−− = 4πα · 2i sin2 θ/2
(√

τ (1 + τ )F̃3 − F̃m − νF̃3/4M 2
)

,

T+− = T−+ = 4πα · 2M√
t

sin θ
(
F̃e + νF̃3/4M 2

)
,

where cos θ = −ν/
√
−t(4M 2 − t). Each of the Tλλ̃ contains a kinematical factor

of sin|λ+λ̃−1| θ
2 cos|λ+λ̃+1| θ

2.

The amplitudes free from kinematical singularities are obtained after
removing these factors.

G1 = ∆F̃e + νF̃3/4M 2, G2 = ∆F̃m + νF̃3/4M 2, G3 ≡ F̃3.



TPE contributions to the amplitudes Gn satisfy fixed-t dispersion relations

πGn(ν) =

∞∫

νth

ℑmGn(ν
′ + i0)

ν ′ − ν
dν ′ −

−νth∫

−∞

ℑmGn(ν
′ − i0)

ν ′ − ν
dν ′

and consequently, vanish at ν → ∞.

Under crossing ν → −ν :

G1,2(−ν) = −G1,2(ν), G3(−ν) = G3(ν).

(Rekalo and Tomasi-Gustafsson, 2004)



The second step

Equation for the imaginary part of amplitude

¯

h

2 Im =

Z

d3~k′′

2k′′

0

X

h

k kk′ k′

k′′ k′′

p pp′ p′

×

The intermediate electron and hadron states are on the mass shell !!!

h =proton — elastic contribution
h = ∆(1232) — ∆ contribution
ect.

ℑmG(el)
n = − α

2π

2∑

i,j=1

∫
F̄i(t1)F̄j(t2)An,ij(ν, t1, t2)θ(k′′

0)δ(k′′2 − m2)θ(p′′0)δ(p′′2 − M 2)d4k′′

F̄i(t) = Fi(t)/(t − λ2)



The third step

Reconstruction of the real part

Gn(ν) = Gn,box(ν) + Gn,xbox(ν)

Gn,box(ν) = ±Gn,xbox(−ν)

Thus to reconstruct Gn it is sufficient to find Gn,box.
The analytical structure of FFs is such that

F̄i(t) =
1

π

∞∫

λ2

ℑmF̄i(t
′)

t′ − t
dt′

It is important that the final result is reduced to the integral
∫

ti,t2<0

dt1dt2F̄i(t1)F̄j(t2)An,ij(ν, t1, t2)...

over the time-like region only !



Reply to Prof.V.Karmanov comment to the talk of Prof.C.Perdrisat
Of course the off-mass shell effects change the “naive” results obtained with

the standard parametrization of the NNγ vertex.

Nevertheless, the expressions for G1 and G2 remain the same as in the naive
approach

G1 = G
(naive)
1 , G2 = G

(naive)
2

But

G3 = G
(naive)
3 + ∆G3(t)

M = M(naive) +
4πα

q2M 2
ū′γµu Ū ′(PµK̂ − PKγµ)U · ∆G3(t)

GE = G
(naive)
E , GM = G

(naive)
M −

√
τ (1 + τ )

√
1 − ε2∆G3(t)
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RESULTS
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PHENOMENOLOGICAL ANALYSIS

D.Borisyuk and A.K., Phys. Rev. C 76 022201(R) (2007)
The cross-section is “diagonalizes”

dσ =
2πα2dt

E2t

1

1 − ε

(
ε|GE|2 + τ |GM |2 + τε21 − ε

1 + ε
|G3|2

)
=

=
2πα2dt

E2t

1

1 − ε

(
ε|GE|2 + τ |GM |2 + O(α2)

)

σR = ε|GE|2 + τ |GM |2 + O(α2)

BUT THE ROSENBLUTH SEPARATION IS NOT POSSIBLE !



The amplitudes can be decomposed as

GE(Q2, ε) = GE(Q2) + δG
(T )
E (Q2, ε) + δGE(Q2, ε) + O(α2)

GM(Q2, ε) = GM(Q2) + δG
(T )
M (Q2, ε) + δGM(Q2, ε) + O(α2)

δG
(T )
E,M + δGE,M are TPE corrections of order α.

δG
(T )
E,M denotes the part of the correction, calculated by Tsai. In-

frared divergence is contained in it.

σR = εG2
E + τG2

M +2εGEδGE +2τGMδGM +2εGEδG
(T )
E +2τGMδG

(T )
M +O(α2)

The terms containing δG
(T )
E,M are always subtracted from the cross-

section by experimenters as a part of radiative corrections, so pub-
lished cross-sections are, dropping terms of order α2

σR = εG2
E + τG2

M + 2εGEδGE + 2τGMδGM



The key point is that GM is enhanced with respect to GE by about
a factor of µ ≈ 3 (proton magnetic moment)

τG2
M ≫ εG2

E ≫ 2εGEδGE, τG2
M ≫ 2τGMδGM ≫ 2εGEδGE

Therefore the term 2εGEδGE is much smaller than three other
terms and can be safely neglected. Instead, the term 2τGMδGM

can be comparable with εG2
E and thus strongly affect the results

of Rosenbluth separation.

δGM(Q2, ε) = [a(Q2) + εb(Q2)]GM(Q2)

σR = τG2
M + ε(G2

E + 2τb G2
M)



(
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)
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4M2
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b = 1
2τ (R

2
LT − R2

PT )



Extracted TPE correction slope b(Q2).
The dashed curves indicate estimated errors.
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Comparison of extracted (dashed lines) and
calculated (solid curves) values of TPE amplitude δGM/GM .
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If the positrons are used instead of electrons, the TPE corrections change
their sign. Thus we have for the Rosenbluth FF ratio squared, measured in

positron-proton scattering

R̃2
LT =

G2
E

G2
M

− 2τb
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dash-dotted lines indicate estimated 1σ bounds for µR̃LT .



CONCLUSIONS

• Effects beyond the Born approximation strongly affect the re-
sults of the e.m. structure of the proton

• In the resonance region the normal beam asymmetry agrees with
the calculations

• There are no data for the target normal spin asymmetry

• The TPE correction to the amplitude GM is exactly the quantity
which is responsible for the discrepancy between Rosenbluth
and polarization transfer methods in the measurements of pro-
ton FFs.

• Positron-proton scattering is expected to be strongly affected
by TPE contribution.


