# Fast generators of direct photons

- Sergey Kiselev, ITEP, Moscow
- Introduction
- Prompt photons
- □ Thermal photons in 1+1 hydrodynamics
  - Hot Hadron Gas (HHG) scenario
  - Qurk Gluon Plasma (QGP) scenario

□ Summary

### Introduction - definitions



Fig. 1. Photon production in (a) leading order process, and (b) next-to-leading order process.

# Initial hard NN collisions, pQCD → prompt γ. Thermalised QGP stage → thermal γ from QGP.

#### Introduction – definitions

#### □ <u>Hadron level</u>:

- meson scatterings:  $\pi\pi \rightarrow \rho\gamma$ ,  $\pi\rho \rightarrow \pi\gamma$ ,  $\pi K \rightarrow K^*\gamma$ ,  $K\rho \rightarrow K\gamma$ ,  $KK^* \rightarrow \pi\gamma$ ,  $\pi K^* \rightarrow K\gamma$ , ...
- **Thermalised hadron stage**  $\rightarrow$  thermal  $\gamma$  from HHG
- **Decay photons**:
  - Long lived ( $c\tau \gg c\tau_{AB} \sim 50\text{-}100 \text{ fm}$ )  $\pi^0 \rightarrow \gamma\gamma, \eta \rightarrow \gamma\gamma, \eta' \rightarrow \rho\gamma/\omega\gamma/2\gamma$
  - Shot lived (cτ ≤ cτ<sub>AB</sub> ~ 50-100 fm)
    ω → πγ, ρ → ππγ, a<sub>1</sub> → πγ, Δ → Nγ, K\* → Kγ, φ → ηγ,
    ... In the dense nuclear matter can not be reconstructed
    in an experiment → direct photons

#### Prompt photons: pp data fit + binary scaling

- PHENIX hep-ph/0609037  $(\sqrt{s})^5 \text{ Ed}^3 \sigma/d^3 p = F(x_T,y)$
- One can use a data tabulation of the  $F(x_T,y)$  to generate prompt photons.
- □ A+B: Ed<sup>3</sup>N/d<sup>3</sup>p(b)= Ed<sup>3</sup> $\sigma_{pp}$ /d<sup>3</sup>p AB T<sub>AB</sub>(b)= Ed<sup>3</sup> $\sigma_{pp}$ /d<sup>3</sup>p N<sub>coll</sub>(b)/ $\sigma_{pp}$ <sup>in</sup>
- Nuclear effects (Cronin, quenching, ...) are not taken into account.
- Realization: GePP.C macros for the ROOT package (http://root.cern.ch)



### **GePP:** results

#### Comparison with RHIC data

#### Prediction for LHC



29.09.08

# Bjorken -(1+1)-HydroDynamics (BHD)



Landau hydrodynamical model, viscosity and conductivity are neglected

6

Photon spectrum in BHD Phys.Rep.364(2002)98 Photon spectra follow from convoluting the photon  $E \frac{dN}{d^3 p} = \int d^4 x E \frac{dN}{d^4 x d^3 p}$ production rates with the space-time evolution For a longitudinally expanding cylinder  $\int d^4x = \pi R_A^2 \int dt dz$  $\int \mathrm{d}t \,\mathrm{d}z = \int_{\tau_0}^{\tau_f} \mathrm{d}\tau \,\tau \,\int_{-v_{\mathrm{rucl}}}^{+y_{\mathrm{nucl}}} \mathrm{d}y'$ For proper time  $\tau$  and rapidity y  $\frac{\mathrm{d}N}{\mathrm{d}^2 p_{\perp} \mathrm{d}y} = \pi R_A^2 \int_{\tau_0}^{\tau_f} \mathrm{d}\tau \,\tau \,\int_{-v_{\mathrm{nucl}}}^{+y_{\mathrm{nucl}}} \mathrm{d}y' E \,\frac{\mathrm{d}N}{\mathrm{d}^4 x \,\mathrm{d}^3 p}$ Input function – production rate E dN/d<sup>4</sup>xd<sup>3</sup>p (E,T) Connection with the local rest frame  $E = p_T \cosh(y' - y)$ For an ideal gas  $T = T_0(\tau_0/\tau)^{1/3}$ For an ideal gas Main parameters: initial  $\tau_0$ ,  $T_0$  and  $T_f$  (at freeze-out)  $\tau_0 \leftrightarrow$  yield,  $T_0 \leftrightarrow$  spectrum slope  $T_f \leftrightarrow$  weak sensitivity,  $T_f = 100 \text{ MeV}$ 29.09.08 7 Baldin ISHEPP XIX, Dubna S.Kiselev

### HHG scenario

- □ C.Song, Phys.Rev.**C47**(1993)2861 an effective chiral Lagrangian with  $\pi$ ,  $\rho$  and  $a_1$  mesons to calculate the processes  $\pi\pi \rightarrow \rho\gamma$ ,  $\pi\rho \rightarrow \pi\gamma$ , and  $\rho \rightarrow \pi\pi\gamma$ .
- C.Song and G.Fai, Phys.Rev.C58(1998)1689.
  parameterizations for photon rates.

$$E\frac{dN}{d^4x \, d^3p}\bigg|_{\text{process}} = T^2 e^{-E/T} F_{\text{process}}(T/m_\pi, E/m_\pi)$$

#### Realization: GeTP\_HHG.C macros for ROOT

# GeTP\_HHG: SPS and RHIC data

#### **SPS**

#### RHIC



one can fit SPS data at high p<sub>t</sub> one can fit RHIC data but with not reasonable parameters

29.09.08

Baldin ISHEPP XIX, Dubna

### GeTP\_HHG: prediction for LHC



# GeTP\_HHG: sensitivity to the parameters



29.09.08

11

# QGP scenario: QGP and HHG phases

QGP: ideal massless parton gas (
$$\mu_q = 0$$
)HHG: ideal massless pion gas $P_q = g_q \frac{\pi^2}{90}T^4 - B,$   
 $\varepsilon_q = g_q \frac{\pi^2}{30}T^4 + B,$   
 $s_q = g_q \frac{2\pi^2}{45}T^3,$  $B$  bag constant $P_h = g_h \frac{\pi^2}{90}T^4,$   
 $\varepsilon_h = g_h \frac{\pi^2}{30}T^4,$   
 $s_h = g_h \frac{\pi^2}{30}T^4,$   
 $s_h = g_h \frac{2\pi^2}{45}T^3,$  $g$  number of degrees of freedom $g_q = 2(N_c^2 - 1) + (\frac{7}{8}) 4N_c N_f$  $N_c$  colors  
 $N_f$  flavors $g_h = 3.$  $\varepsilon_q = 3P_q + 4B.$  $\varepsilon_h = 3P_h.$ 

#### First order phase transition at critical temperature T<sub>c</sub>

$$\begin{split} T_c^q &= T_c^h = T_c, \\ P_c^q &= P_c^h = P_c, \end{split} \qquad \qquad T_c = \sqrt[4]{\frac{90B}{(g_q - g_h)\pi^2}}. \end{split}$$

29.09.08

# QGP scenario: mixed phase



Baldin ISHEPP XIX, Dubna

### Rates from QGP -1<sup>st</sup> order

Perturbative thermal QCD applying Hard Thermal Loop (HTL) resummation



Fig. 1. Lowest order contributions to photon production from the QGP: Compton scattering (left) and quark-antiquark annihilation (right).

$$\left. \frac{\mathrm{d}N}{\mathrm{d}^4 x \,\mathrm{d}^3 p} \right|_{1-\mathrm{loop}} = a \alpha \alpha_{\mathrm{s}} \mathrm{e}^{-E/T} \, \frac{T^2}{E} \ln \frac{0.2317E}{\alpha_{\mathrm{s}} T} \, ,$$

where a = 0.0281 for  $N_F = 2$  thermalized quark flavors and a = 0.0338 for  $N_F = 3$ , respectively.

$$\alpha_s(T) = \frac{6\,\pi}{(33 - 2\,N_f)\,\ln(8\,T/T_c)}.$$

29.09.08

Baldin ISHEPP XIX, Dubna

14

### Rates from QGP - 2<sup>nd</sup> order



Fig. 5. Photon production processes corresponding to the 2-loop HTL contribution: bremsstrahlung (left) and annihilation with scattering (right). The filled circles indicate HTL resummed gluon propagators. The lower line indicates either a quark or a gluon.

 $\frac{dN}{d^4x d^3p} \Big|_{\text{brems}} = b\alpha\alpha_{\text{s}} e^{-E/T} \frac{T^2}{E},$ where b = 0.0219 for  $N_{\text{F}} = 2$  and b = 0.0281 for  $N_{\text{F}} = 3$ , respectively. (aws) in Fig. 5 leads to  $\frac{dN}{d^4x d^3p} \Big|_{\text{aws}} = c\alpha\alpha_{\text{s}} e^{-E/T}T,$  2-loop contribution isthe same order in  $\alpha_{\text{S}}$   $3-\text{loop} \dots$ 

where c = 0.0105 for  $N_F = 2$  and c = 0.0135 for  $N_F = 3$ , respectively.<sup>7</sup>

Thermal photon production in the QGP is a non-perturbative mechanism that can not be accessed in perturbative HTL resummed thermal field theory One must consider the QGP rates as an educated guess. PL B510(2001)98

### Rates from QGP



#### Realization: GeTP\_QGP.C macros for ROOT

#### Rates: QGP vs HHG



Steeper spectra from QGP

### GeTP\_QGP: SPS and RHIC data

#### SPS

#### RHIC



# GeTP\_QGP: comparison with 2+1 hydro



The same  $\tau_0$ ,  $T_0$ : steeper HHG spectrum in 1+1 due to radial flow in 2+1

# GeTP\_QGP: prediction for LHC

2+1 hydro, F.Arleo, D. d'Enterria, D. Peressounko, nucl-th/0707.2357



# GeTP\_QGP: $dN_{\gamma}/dy$ and ...

| $T_c = 170 \text{ MeV}, g_h = 8, T_f = 100 \text{ MeV}$ |                       |                        |                                     |                   |                        |                  |             |
|---------------------------------------------------------|-----------------------|------------------------|-------------------------------------|-------------------|------------------------|------------------|-------------|
| √s<br>GeV                                               | T <sub>0</sub><br>MeV | τ <sub>0</sub><br>fm/c | τ <sub>c</sub> <sup>q</sup><br>fm/c | $\tau_c^{h}$ fm/c | τ <sub>f</sub><br>fm/c | $dN_{\gamma}/dy$ | INIT<br>CPU |
| 17                                                      | 340                   | 0.20                   | 1.6                                 | 9.5               | 46.7                   | 14               | 110 s       |
| 200                                                     | 430                   | 0.15                   | 2.4                                 | 14.4              | 70.8                   | 31               | 160 s       |
| 5500                                                    | 650                   | 0.10                   | 5.6                                 | 33.2              | 163                    | 173              | 390 s       |

Contribution of the QGP phases into dN/dy: ~ 10% INIT CPU – CPU for initialization

# Summary

- 3 fast generators of direct photons have been proposed:
  - GePP.C prompt photons (pp data fit + binary scaling)
  - GeTP\_HHG.C thermal photons in the HHG scenario
  - GeTP\_QGP.C thermal photons in the QGP scenario in Bjorken (1+1) hydrodynamics other assumptions: ideal massless gas,  $\mu_q = 0$ ,

1<sup>st</sup> order phase transition,

QGP rates – educated guess

- One can fit SPS and RHIC data
- Predictions for LHC

• GePP.C, GeTP\_HHG.C have been implemented, thanks to Ludmila Malinina, into the FASTMC code of the UHKM package (<u>http://uhkm.jinr.ru</u>).