Manifestation of three-body forces in Bethe-Salpeter and light-front equations

V.A. Karmanov ${ }^{\ddagger}$ and P. Maris ${ }^{\dagger}$
\$Lebedev Physical Institute, Moscow, Russia
${ }^{\dagger}$ Iowa State University, Ames, Iowa, USA

- Aim

- To present the results of first solution, for one-boson exchange interaction, of
- Three-body Bethe-Salpeter equation
- Three-body light-front equation
- To incorporate two exchanged bosons in flight.
- To obtain important physical conclusions (three-body forces).

- First - two-body problem

- Two-body Bethe-Salpeter equation

One can find $\Phi(k, p)$ and mass $M^{2}=p^{2}$.

- OBE kernel

All particles are spinless

$$
V_{\text {Feyn }}\left(k, k^{\prime}, p\right)=-\frac{g^{2}}{\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon}
$$

In more realistic case (two fermions) it was intensively studied in Dubna:
V. Burov, S. Bondarenko
S. Dorkin, L. Kaptari, S. Semykh

- Two-body light-front equation

$$
\begin{aligned}
& \left(\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}-M^{2}\right) \psi\left(\vec{k}_{\perp}, x\right) \\
= & -\frac{m^{2}}{2 \pi^{3}} \int \psi\left(\vec{k}_{\perp}^{\prime}, x^{\prime}\right) V\left(\vec{k}_{\perp}^{\prime}, x^{\prime} ; \vec{k}_{\perp}, x, M^{2}\right) \frac{d^{2} k_{\perp}^{\prime} d x^{\prime}}{2 x^{\prime}\left(1-x^{\prime}\right)}
\end{aligned}
$$

OBE kernel:

$$
\begin{aligned}
& V\left(\vec{k}_{\perp}, x^{\prime} ; \vec{k}_{\perp}, x ; M^{2}\right)= \\
& \begin{cases}-\frac{4 \pi \alpha}{\mu^{2}+\frac{x^{\prime}}{x}\left(1-\frac{x}{x^{\prime}}\right)^{2} m^{2}+\frac{x^{\prime}}{x}\left(\vec{k}_{\perp}-\frac{x}{x^{\prime}} \overrightarrow{k^{\prime}} \perp\right)^{2}+\left(x^{\prime}-x\right)\left(\frac{m^{2}+\vec{k}^{2}}{x^{\prime}\left(1-x^{\prime}\right)}-M^{2}\right)}, & \text { if } x \leq x^{\prime} \\
-\frac{4 \pi \alpha}{\mu^{2}+\frac{x}{x^{\prime}}\left(1-\frac{x^{\prime}}{x}\right)^{2} m^{2}+\frac{x}{x^{\prime}}\left(\overrightarrow{k^{\prime}} \perp \frac{x^{\prime}}{x} \vec{k}_{\perp}\right)^{2}+\left(x-x^{\prime}\right)\left(\frac{m^{2}+\vec{k}^{2}}{x(1-x)}-M^{2}\right)}, & \text { if } x \geq x^{\prime}\end{cases}
\end{aligned}
$$

- Techniques of calculation

Graph techniques developed by V.G. Kadyshevsky (1964), modified (V. Karmanov) for the case of light-front dynamics.

Review:
J. Carbonell, B. Desplanques, V.A. Karmanov and
J.-F. Mathiot, Phys. Reports 300, 215 (1998).

- Two-body light-front wave function

$$
\psi=\psi(\vec{k}, \vec{n})
$$

Wave function depends on the orientation \vec{n} of the light-front plane!
Another pair of variables

$$
\begin{gathered}
\vec{k}_{\perp}=\vec{k}-\vec{n}(\vec{n} \cdot \vec{k}), \quad x=\frac{1}{2}\left(1-\frac{\vec{n} \cdot \vec{k}}{\varepsilon_{k}}\right), \\
\psi=\psi\left(\vec{k}_{\perp}, x\right)
\end{gathered}
$$

- OBE light-front kernel

Ladder kernel

Nonrelativistic limit

$$
V\left(\vec{k}, \overrightarrow{k^{\prime}}\right)=\frac{-4 \pi \alpha}{\left(\vec{k}-\overrightarrow{k^{\prime}}\right)^{2}+\mu^{2}},
$$

Coordinate space: well-known Yukawa potential.

$$
V(r)=-\frac{\alpha}{r} \exp (-\mu r)
$$

Difference between BS and LF approche

Stretched boxes

(a)

(b)
(a) Ladder graph with two exchanges (taken into account). (b) "Stretched box" graph.

- Automatically included in iterations of BS equation.
- Not included in the LF equation.

However, inspection shows that stretched boxes are small.

- Comparison of BS and LFD results

Mangin-Brinet and J. Carbonell, Phys. Lett., B474 (2000) 237.

Coincidence of BS and LFD results! Huge difference between NR and REL results.

- Dependence on the exchange mass μ

Two-body binding energy B versus coupling constant α

- EM form factor: BS vs. LFD

V.A. Karmanov, J. Carbonell, M. Mangin-Brinet, Nucl. Phys. A 790, 598c, (2007).

Bethe Salpeter form factor $\mathrm{f}\left(\mathrm{Q}^{2}\right)$
Comparison Minkowski/LFD - Ladder + cross ladder graphs - $\mathrm{m}=1, \mu=0.5, \mathrm{~B}=1$

EM form factor
Black curve: Bethe-Salpeter calculation.
Red curve: LFD calculation, via $\psi\left(\vec{k}_{\perp}, x\right)$.

- Two-body conclusion

- Binding energies calculated by BS and LFD are very close to each other.

Relativistic three-body problem

- Three-body Bethe-Salpeter equation

$$
\begin{aligned}
& \left(k_{1}^{2}-m^{2}\right)\left(k_{2}^{2}-m^{2}\right)\left(k_{3}^{2}-m^{2}\right) \Phi\left(k_{1}, k_{2}, k_{3} ; p\right) \\
& =-i \int \Phi\left(k_{1}^{\prime}, k_{2}^{\prime}, k_{3}^{\prime} ; p\right)\left(V_{12}+V_{23}+V_{31}\right) \\
& \times(2 \pi)^{4} \delta^{(4)}\left(k_{1}^{\prime}+k_{2}^{\prime}+k_{3}^{\prime}-p\right) \frac{d^{4} k_{1}^{\prime}}{(2 \pi)^{4}} \frac{d^{4} k_{2}^{\prime}}{(2 \pi)^{4}} \frac{d^{4} k_{3}^{\prime}}{(2 \pi)^{4}}
\end{aligned}
$$

Three-body relativistic equation in LFD

Equation with two-body and three-body forces

$$
\begin{aligned}
\left(s_{123}-M_{3}^{2}\right) \psi & =-\frac{m^{2}}{2 \pi^{3}} \int \psi V_{12} \frac{d^{2} k^{\prime} \perp d x^{\prime}}{(2 \pi)^{3} 2 x^{\prime}\left(1-x^{\prime}\right)\left(1-x_{3}\right)} \\
& +(231)+(312) \\
& +\int \psi K_{123} \frac{d^{2} k^{\prime} \perp d x^{\prime}}{(2 \pi)^{3} 2 x^{\prime}\left(1-x^{\prime}\right)} \frac{d^{2} k_{3}^{\prime}{ }_{3} d x_{3}^{\prime}}{(2 \pi)^{3} 2 x_{3}^{\prime}\left(1-x^{\prime}\right)},
\end{aligned}
$$

- LFD equation for Faddeev component

Faddeev decomposition:

$$
\begin{aligned}
\psi(1,2,3) & =\psi_{12}(1,2,3)+\psi_{23}(1,2,3)+\psi_{31}(1,2,3) \\
& =\psi_{12}(1,2,3)+\psi_{12}(2,3,1)+\psi_{12}(3,1,2)
\end{aligned}
$$

Equation:

$$
\begin{aligned}
& \left(s_{123}-M_{3}^{2}\right) \psi_{12}\left(\vec{k}_{\perp}, x ; \vec{k}_{3 \perp}, x_{3}\right) \\
& =-\frac{m^{2}}{2 \pi^{3}} \int \frac{d^{2} k_{\perp}^{\prime} d x^{\prime}}{2 x^{\prime}\left(1-x^{\prime}\right)} \frac{1}{\left(1-x_{3}\right)} V\left(\vec{k}_{\perp}, x ; \vec{k}_{\perp}^{\prime}, x^{\prime} ; M_{12}^{2}\right) \\
& \times\left[\psi_{12}\left(\vec{k}^{\prime}, x^{\prime} ; \vec{k}_{3 \perp}, x_{3}\right)+\psi_{12}\left(\vec{k}^{\prime} 23 \perp, x_{23}^{\prime} ; \vec{k}_{1 \perp}, x_{1}^{\prime}\right)\right. \\
& \left.\quad+\psi_{12}\left(\vec{k}_{31 \perp}^{\prime}, x_{31}^{\prime} ;{\overrightarrow{k^{\prime}}}_{2 \perp}, x_{2}^{\prime}\right)\right]
\end{aligned}
$$

$\vec{k}_{\perp}, x ; \vec{k}_{3 \perp}, x_{3}$ - light-front Jacobi variables.

- Five scalar variables

$$
\psi_{12}=\psi_{12}\left(\vec{k}_{\perp}, x ; \vec{k}_{3 \perp}, x_{3}\right)
$$

depends on:

$$
k_{\perp}, \quad k_{3 \perp}, \quad u=\frac{\vec{k}_{\perp} \cdot \vec{k}_{3 \perp}}{k_{\perp} k_{3 \perp}}, \quad x, \quad x_{3}
$$

After discreteization, five variables are converted in one huge index.

Computer facilities - in USA, the same as used for lattice calculations, but small part of them.

- Nonrelativistic Faddeev equation

$$
\begin{aligned}
& \left(E_{3}-\frac{\vec{p}^{2}}{m}-\frac{3 \vec{q}^{2}}{4 m}\right) \psi_{12}(\vec{p}, \vec{q}) \\
& =\int V\left(\vec{p}-\overrightarrow{p^{\prime}}\right)\left[\psi_{12}\left(\overrightarrow{p^{\prime}}, \vec{q}\right)+\psi_{12}\left(-\frac{1}{2} \overrightarrow{p^{\prime}}+\frac{3}{4} \vec{q},-\overrightarrow{p^{\prime}}-\frac{1}{2} \vec{q}\right)\right. \\
& \left.+\psi_{12}\left(-\frac{1}{2} \overrightarrow{p^{\prime}}-\frac{3}{4} \vec{q}, \overrightarrow{p^{\prime}}-\frac{1}{2} \vec{q}\right)\right] \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} . \\
& \quad \text { Kernel: } V\left(\vec{p}-\overrightarrow{p^{\prime}}\right)=-\frac{4 \pi \alpha}{\left(\vec{p}-\overrightarrow{p^{\prime}}\right)^{2}+\mu^{2}}
\end{aligned}
$$

Kernel in the coordinate space: $\quad V(r)=-\frac{\alpha e^{-\mu r}}{r}$

3 variables, solved immediately.

- Three-body results: BS, LFD, non.-rel.

Three-body binding energy in the limit when it tends to zero, for $\mu=0.01$ and $\mu=0.5$

LFD and BS results are very different, in contrast to two-body case!

- Three-body forces of relativistic origin

(Two mesons in flight)

- Perturbative correction

$$
\begin{aligned}
\Delta M_{3}^{2}= & -\int \frac{d^{2} k_{3 \perp}}{(2 \pi)^{3}} \frac{d^{2} k_{\perp}}{(2 \pi)^{3}} \frac{d^{2} k_{3 \perp}^{\prime}}{(2 \pi)^{3}} \frac{d^{2} k_{\perp}^{\prime}}{(2 \pi)^{3}} \\
& \times \int_{0}^{1} \frac{d x_{3}}{2 x_{3}\left(1-x_{3}\right)} \frac{d x}{2 x(1-x)} \frac{d x_{3}^{\prime}}{2 x_{3}^{\prime}\left(1-x_{3}^{\prime}\right)} \frac{d x^{\prime}}{2 x^{\prime}\left(1-x^{\prime}\right)} \\
& \times \psi\left(\vec{k}_{\perp}, x ; \vec{k}_{3 \perp}, x_{3}\right) \\
& \times K_{123}\left(\vec{k}_{\perp}, x ; \vec{k}_{3 \perp}, x_{3} ; \vec{k}_{\perp}, x^{\prime} ; \vec{k}_{3 \perp}^{\prime}, x_{3}^{\prime}\right) \\
& \times \psi\left(\vec{k}_{\perp}^{\prime}, x^{\prime} ; \vec{k}_{3 \perp,}^{\prime}, x_{3}^{\prime}\right)
\end{aligned}
$$

11-dimensional integral

$$
K_{123}=6 \times(9 \quad \text { terms })=54 \quad \text { graphs }
$$

- Including correction

Three-body bound state mass squared M_{3}^{2} vs. coupling constant α for exchange masses $\mu=0.01,0.5$ and 1.5.

- Three-body forces

$$
V\left(\vec{r}_{1}, \vec{r}_{2}, \vec{r}_{3}\right) \neq V_{12}\left(\vec{r}_{1}, \vec{r}_{2}\right)+V_{23}\left(\vec{r}_{2}, \vec{r}_{3}\right)+V_{31}\left(\vec{r}_{3}, \vec{r}_{1}\right)
$$

An indication: underbinding of tritium:

$$
\begin{array}{ll}
\text { Paris: } & E=-7.38 \mathrm{MeV} \\
\text { RSC: } & E=-7.23 \mathrm{MeV} \\
\text { experiment: } & E=-8.48 \mathrm{MeV}
\end{array}
$$

Two mesons in flight as a first order relativistic correction in the framework of the three-body Schrödinger equation: Shin-Nan Yang, Phys. Rev. C10 (1974) 2067. Shin-Nan Yang, W, Glöckle, Phys. Rev. C33 (1986) 1774.

- Conclusions

- Three-body relativistic LFD and BS equations with OBE kernel are solved.
- Binding energies considerably differ from each other (in contrast to two-body case)
- Three-body forces of relativistic origin appear in three-body system.
- Three-body forces remove the difference between between LFD and BS.
- Undoubted manifestation of three-body forces is found.

- For the present precision, we always need three-body forces.

