ASME method

and particle reconstruction

A.Jerusalimov JINR-LHEP, Dubna

Outlook

Charged particle reconstruction

 What is ASME ?
 ASME for CBM
 ASME for HADES
 ASME for HADES → FullFit

2. V⁰ reconstruction

- .1. Features of V⁰ decay
- .2. V⁰ Finder
- .3. V⁰ Fitter
- 3. Ξ^{-}/Ω^{-} reconstruction
- 4. Conclusion

1. Charged particle reconstruction

1.1 <u>What is ASME ?</u> \rightarrow Approximate <u>Solution of Motion Equation</u>

Equation of motion of charged particle in magnetic field $\frac{d\vec{P}}{dt} = \frac{e}{c} \vec{v} \times \vec{H} + \frac{\vec{P}}{P} \cdot \frac{dP}{dt}$

- P momentum,
- β azimuthal angle,
- α deep angle,
- S length of track
- H Magnetic field

$$\beta(S) = \beta_0 + \frac{e}{c} \int_0^S \frac{1}{p} \left[-H_y + \tan \alpha \cdot (H_z \cos \beta + H_x \sin \beta) \right] dS$$

$$\sin \alpha(s) = \sin \alpha_0 + \frac{e}{c} \int_0^s \frac{1}{p} \left(H_x \cos \beta - H_z \sin \beta \right) dS$$

$$\begin{aligned} \mathbf{2^{nd} integration:} \rightarrow & x(s) = x_0 + \int_0^s \sin \beta(s) ds \\ \mathbf{2^{nd} integration:} \rightarrow & y(s) = y_0 + \int_0^s \tan \alpha(s) ds \\ \mathbf{\underline{But}} & \mathbf{x} = \mathbf{x}(x_0, y_0, \beta_0, \alpha_0, P_0) \\ \mathbf{y} = \mathbf{y}(x_0, y_0, \beta_0, \alpha_0, P_0) \end{aligned}$$

Therefore to find $(x_0, y_0, \beta_0, \alpha_0, P_0)$ it is necessary

$$\chi^{2} = \sum_{\substack{i,j \\ n}}^{n} (x_{i}^{exp} - x_{i}) (G + D_{x}E)_{ij}^{-1} (x_{j}^{exp} - x_{j}) \Rightarrow \quad \text{min in X0Z plane}$$
$$w^{2} = \sum_{\substack{i,j \\ i,j}}^{n} (y_{i}^{exp} - y_{i}) (G + D_{y}E)_{ij}^{-1} (y_{j}^{exp} - y_{j}) \Rightarrow \quad \text{min in Y0Z plane}$$

where G – matrix of multiple scattering, D_x , D_y – matrix of errors, E – unity matrix

To minimize:

needs initial values

$$x_0^{init}, y_0^{init}, \beta_0^{init}, \alpha_0^{init}, P_0^{init}$$

How to minimize ?

- 1. Gradient downhill method
- 2. Variation procedure:

$$\begin{aligned} x_i^{k+1} &= x_i^k + \delta x_0 + \frac{\partial x}{\partial \beta} \Big|_i \delta \beta_0 + \frac{\partial x}{\partial p} \Big|_i \delta p_0 \\ y_i^{k+1} &= y_i^k + \delta y_0 + \frac{\partial y}{\partial \tan \alpha} \Big|_i \delta \tan \alpha_0 \\ &\underset{\qquad \downarrow}{\min \mathbf{x}^2} &\underset{\qquad \downarrow}{\min \mathbf{w}^2} \\ &\underset{\qquad = 1}{\lim} \delta x_0 + a_{12} \delta \beta_0 + a_{13} \delta p_0 = b_1 \\ a_{21} \delta x_0 + a_{22} \delta \beta_0 + a_{23} \delta p_0 = b_2 \\ a_{31} \delta x_0 + a_{32} \delta \beta_0 + a_{33} \delta p_0 = b_3 \end{aligned}$$

 $par_0^{\text{iter}} = par_0^{\text{iter-1}} + \delta par_0$ Needs 2 – 3 iterations to get minimum

Results:
$$x_0^{fit}$$
, y_0^{fit} , β_0^{fit} , α_0^{fit} , p_0^{fit} - parameters σ_x^2 , σ_y^2 , σ_β^2 , σ_α^2 , σ_P^2 , $\delta_{P\beta}$ - errors and correlations**Procedure is very robust:**accuracy of P_0^{init} is $\approx 50 \%$

1.2 ASME for CBM

Input data:

 $x^i,\,y^i$ - coordinates of hits, initial values: $\alpha_0,\,\beta_0,\,P_0$ – from parabola approximation.

 $\delta P_0 = 0.79 \%$

 δP_0 vs P_0

8STS \rightarrow dtot (Si)=3500 μ m \rightarrow δ P₀ = 1.40 %

1.3 ASME for HADES

Results: Momentum resolution

for electron (C+C at 2.0 AGeV) Spline:

 $RMS_{P} = 2.21 \%$ $\sigma_{P} = 2.25 \%$

ASME:

 $RMS_{P} = 2.02 \%$ $\sigma_{P} = 1.53 \%$

<u>for protons</u> (pp elastic at 2.2 GeV) **Spline:**

RMS_P = 10.9 % σ_{P} = 3.1 % ASME: RMS_P = 7.2 % σ_{P} = 2.7 %

ISHEPP XIX

JINR Dubna Sep 29 – Oct 4, 2008

1.4 ASME for HADES – FullFit

Details of MDC tracking:

- Data of track: "hits" \rightarrow t_i drift time (track trajectory \leftrightarrow ith sense wire)
- *Trackfinder* select hits produced by concrete track: $\{t_i^{inner}\}$ & $\{t_i^{outer}\}$
- Track model for inner and outer segments of track straight line

<u>1st step:</u> Functional to be minimized

$$F = \sum_{i} \frac{\left(t_i + t_{off} - T_i\right)^2}{\left(\Delta T_i\right)^2} u$$

 T_i – measured drift times t_i – drift times (calc.) w_i – Tukey weights ΔT_i –drift time errors

<u>Results:</u> { x_1 , y_1 , z_1 }, { x_2 , y_2 , z_2 }, { x_3 , y_3 , z_3 }, { x_4 , y_4 , z_4 } – coordinates of track segments

<u>2nd step:</u> SPLINE + RK(optionally) to determine momentum

Weakness: – 2 step procedure

- do not take into account energy loss and multiple scattering
- RK is more precise but some times slow than SPLINE
- hard to propagate errors (momentum and angles) for track
- global min sometimes was not found
- not quite sufficient fakes rejection (hits filtering)
- problem of close tracks

<u>Solution:</u> (segments trackfitter) + (Spline / RK) \rightarrow <u>FullFit</u> (single step procedure)

Input data: hits (t_i) from all MDC's, P_0^{init} and x_i^{Virt} , y_i^{Virt} from Spline or Parabola4

Functional to be minimized:

$$w^{2} = \sum_{i,j}^{n} (t_{i}^{exp} + t_{off} - T_{i}) (G_{t} + D_{t}E)_{ij}^{-1} (t_{j}^{exp} + t_{off} - T_{j}) w_{ij}$$
 "time like"
or
$$w^{2} = \sum_{i,j}^{n} \left(d(t_{i}^{exp} + t_{off}) - D_{i} \right) (G_{d} + D_{t}E)_{ij}^{-1} \left(d(t_{j}^{exp} + t_{off}) - D_{j} \right) w_{ij}$$
 "space like"

where $T_i = T(d_i) = T(x_0, y_0, \beta_0, \alpha_0, P_0)_{i-layer}$ - drift time (calc.) $D_i = D(x_0, y_0, \beta_0, \alpha_0, P_0)_{i-layer}$ - track \leftrightarrow wire distance w_{ij} - Tukey weights $G_t (G_d)$ - matrix of multiple scattering D_t - matrix of errors

Expected results:

- sufficient accuracy of determination of track parameters (better than for SPLINE and at least not worse than for RK),
- calculation of errors of parameters
 - (especially important for Kine Fit)
- better "hits filtering" during track reconstruction:

Necessary to test.

2. V⁰ reconstruction

$\Lambda^0(K^0) \rightarrow p(\pi^+) + \pi^-$

2.1 <u>Features of V⁰ – decay</u> \rightarrow

Primary Vertex position ? Track : Primary or Secondary ? Secondary Vertex (V⁰) position ?

Primary VertexFinder

used track propagation procedure and virtual planes

Χ_ν (μm)	0.7 ± 2.2	
Υ _ν (μm)	- 0.3 ± 1.4	
Ζ _v (μm)	- 1.9 ± 4.1	

Practically the same both for 7STS and 8STS

For further analysis were used $X_V = Y_V = Z_V = 0.0$

Tracks separation

used impact parameter: distance between track and Primary Vertex position

2.2 <u>V⁰-Finder</u> (for 7STS)

Accuracy for secondary tracks at 1st hit

All "+/-" pairs of secondary tracks are tested !

<u>Cuts</u>

- **<u>R2T</u>**: $R_{2Tr} < R_{2Tr}^{lim}$ min distance between 2 tracks
- **<u>ZV</u>** : $Z_V > Z_V^{\text{lim}} Z$ position of pair
- **<u>D00</u>**: $D_{00} < D_{00}^{\text{lim}}$ impact parameter for pair (for primary V⁰)
- **<u>Rpp</u>**: $R_{pp} > R_{pp}^{lim}$, where $R_{pp} = P^+/P^-$ (only for Λ^0 !)
- PID: Taken from GEANT

Accuracy of Λ^0 parameters

V0-Finder: results and 8STS vs 7STS

	<mark>∧</mark> 0 7sts	∧ ⁰ 8STS	K ⁰ 7STS	K ⁰ 8STS
S/B*	31.2	28.1	8.4	7.1
σΡ _v (%)	0.58	1.10		
$\sigma \beta_v$ (mrad)	0.24	0.36		
σtan(α _v)	0.28	0.33		
σ Χ <mark>ν⁰ (µm)</mark>	10.8	16.0	9.4	15.1
σ Υ <mark>v⁰ (µm)</mark>	12.8	17.1	9.5	14.6
σ Ζ _v ⁰ (μm)	91.1	154.3	52.8	98.8
σ M _V ⁰ MeV/c ²)	0.72	1.16	1.90	3.13

* <u>Cuts:</u> R2T, ZV, D00 & Rpp for **A0**; R2T, ZV, D00 for **K0**

 d_{tot} (Si)_{7STS}=1200 μ m

d_{tot}(Si)_{8STS}=3500µm

Resolution ~ $\sqrt{d_{tot}}$ (Si)

2.3 <u>V⁰- Fitter</u> (for 8STS)

2 versions of V⁰-Fitter were tuned and tested

1. Simplified V⁰-Fit :
input: parameters of 2 tracks at secondary vertex
+
$$(M_{pair} - M_V)^2 \rightarrow min$$

2. <u>Full V⁰-Fit</u> input: hits of 2 tracks &

secondary vertex as additional hit

$$\begin{array}{c} & \overbrace{\text{simultaneous ASME fit}}^{\downarrow} \text{ for hits} \\ & \stackrel{+}{(M_{pair} - M_V)^2} \rightarrow \begin{array}{c} 0 & (1^{st} \text{ constraint}) \\ & \stackrel{+}{+} \end{array} \\ D_{00}^{V} \rightarrow 0 & (\text{impact parameter for V}^0 - 2^{nd} \text{ constraint}) \end{array}$$

Needs 3 iteration to get minimum

Accuracy of Λ^0 parameters (Full V⁰-Fit)

ISHEPP XIX

JINR Dubna Sep 29 – Oct 4, 2008

 \mathbf{M}_{+-} are not δ -function because of the simple method of minimization.

Necessary use Lagrange method (or some another) for the last iteration.

 \downarrow Space resolution $\rightarrow 1.5 - 2$ times better (estimation)
ISHEPP XIX JINR Dubna Sep 29 - Oct 4, 2008

V⁰-Finder vs V⁰-Fitter (8STS)

	<mark>∧</mark> ⁰ - Finder	<mark>∧</mark> ⁰-Fitter	K ⁰ - Finder	K ⁰ - Fitter
S/B*	28.1	32.8	7.1	8.8
σΡ _v (%)	1.10	0.37		
σ β _v mrad)	0.36	0.13		
σtan(α _v)	0.33	0.13		
σ Χ <mark>ν⁰ (µm)</mark>	16.0	7.7	15.1	6.3
σ Υ <mark>v⁰ (µm)</mark>	17.1	7.7	14.6	6.7
σ Ζ <mark>ν⁰ (μ</mark> m)	154.3	68.4	98.8	53.5
σ M _v ^{0 (} MeV/c²)	1.16	0.25	3.13	0.78

* <u>Cuts:</u> R2T, ZV, D00 & Rpp for Λ^0 ; R2T, ZV, D00 for K^0

3. $\underline{\Xi^{-}/\Omega^{-}}$ reconstruction

$\Xi^{-}(\Omega^{-}) \rightarrow \pi^{-}(K^{-}) + \Lambda^{0} \rightarrow \pi^{-}(K^{-}) + p + \pi^{-}$

4. Conclusion

ASME method

- takes into account energy loss and multiple scattering
- provides a good momentum resolution
- permits to calculate both track parameters and errors
- sufficient count rate

Full Fit (single step procedure, further development of ASME for HADES) seems to be more effective for track reconstruction, especially at large multiplicities.

The presented algorithm of <u>V⁰-Finder</u> gives good accuracies both for kinematical parameters and vertex position of V⁰'s and provides effective V⁰ reconstruction.

The algorithm of <u>V⁰-Fitter</u> permits to get an essentially better resolutions both for V⁰ kinematical parameters and vertex position.

V⁰-Finder/Fitter algorithm can be implemented for Ξ^{-}/Ω^{-} reconstruction.

ASME methodwas successfully used for particle reconstruction on
HADES and CBM setup.ASME methodcan be used for particle reconstruction
in another coordinate detectors such as MPD (project NICA)