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Motivation:
to  study  the   multiparticle  collective  flows  of
secondary particles produced in  ultrarelativistic
heavy ion collisions  

Plan of the talk:

1. Short introduction to the multiresolution (wavelet) analysis;
2. Which basis functions to use, which functions to decompose and why?
3. The results of the wavelet transform: the general mathematical formulas 
along with the graphic representations  of some chosen examples. 
Comparisons of the analytical, numerical and MC calculations;
4. Correction of the wavelet spectra for finite detector efficiency;
5. Statistical errors of the wavelet spectra;
6. Summary.  



  

The continuous wavelet transform
 of analyzed function (or distribution)
 f(x)  has the form:

where C    is a normalizing factor.

(1)


a , b

x =x−b
a 

are shifted and/or dilated daughter functions 
generated from mother wavelet function (x), 
b is a translation parameter and a is a dilation 
parameter or  scale.

Coefficients W

(a,b)  are amplitudes of basis functions 

a,b
 in f(x). 

Wa , b=C∫
−∞

∞

f  x a ,bx dx ,

parameter a is related to signal width, b is related to its position (phase) 

Wavelet analysis designed to study processes on different scales



  

The employed basis functions :
(the plots are shown on the next slide) 

1) Gaussian kernel (not a wavelet)  
2) MHAT (or g

2
) wavelet – the second   

    derivative of Gaussian function 
3) Morlet wavelet  – cosine-modulated  
    Gaussian function  (the parameter is 
    modulating frequency 

m
)



  

x =g2x =1−x2exp −x2/2 x =m6 x =[cos m x −exp−m
2 /2]×

×exp −x2/2 
The constant term exp(-

m
2/2) is added

only to ensure the wavelet normalization 
will equal 0 when integrated from -∞ to ∞.
It can be neglected for high frequencies. 

Gaussian

x =g x=exp −x2/2 



  

Normalization factors C

 of the employed basis functions: 

1

1 /4a
2

31 /4a

1

1 /40.51.5 exp−m
2 −2exp −3m

2 /4 a

for Gaussian, for MHAT

and for Morlet.

They follow from the normalizing condition C
2 ∫
−∞

∞

a ,b
2 x dx=1.



  

The decomposed functions: 

1) Gaussian as a prototype of jet structures (the parameters: standard deviation 
, mean )
2) cosine – to find out how the wavelet analysis is related to the “conventional” 
flow analysis (the parameters: frequency , phase )  

Both the functions are normalized to unity since they are regarded probability 
density functions:

1) Gaussian by 1/(√2) 
2) (raised) cosine by   

C cos=1/{[sin  x max−sin  x min]/C x max− xmin }

where x
max

 and x
min

 are upper and lower bound of analyzed interval and C is 
a constant of uniform distribution on which the cosine is superimposed. 



  

W ga , b= 1
1 /4  a

a 2 2
exp[−b−2

2 2a 2]

W g2
a ,b= 2 a5/2

31 /4  2a23/ 2 [1−b−2

2a2 ]exp[−b−2

2 2a 2 ]

Analytical solutions of integral (1) when decomposing Gaussian:

for Gaussian: 

for MHAT


Gaussian with sigma  √2+a2


MHAT with sigma  √2+a2  

At small scales:  2a22 ⇒constant width; at large scales:  2a2 a2 ⇒expanding width;

(2)

(3)



  

W m a ,b= 1

1 /4[0.51.5exp−m
2 −2exp−0.75m

2 ]  a
2a2

exp[ −m
2  2

2  2a2 ]×
×{cos[ a

 2a2
m b−]−exp[ −m

2 a2

2 2a2 ]}exp[ −b−2

2 2a2]

for Morlet


Morlet with sigma  √2+a2 and frequency 

m
 is modified by factor a/(a2+2).

(4)

Summary: The phase dependences have always a shape of the employed 
basis functions with the same means but modified widths. Their amplitudes 
depend on scale a and on  of the analyzed Gaussian.  They go to 0 for 
either small or large scales. 



  

The next slides present two-dimensional amplitude (i.e. W

(a,b)) spectra of the 

Gaussian peak with =0.5 and mean =0 as well as the slices taken at their 
global maxima along b (phase) and along a (scale) axes.  The analytical 
solutions are always compared with the corresponding numerical results and 
the Monte Carlo simulations when 100 Gaussian distributed  values are 
generated. The Morlet frequency is set to  

m
= 6 (although it can be arbitrary).

Example



  

W


(a,b)
spectra
of the
studied
Gaussian
peak. It is
always
represen-
ted by the
global 
maximum
at phase 
b==0
but at 
different
scales, 
depend-
ing on the
used
basis
function.



  

b slices at the maxima of W

(a,b)

spectra for all the studied basis 
functions. The scales where the 
slices are done  are shown in the 
Figures. The plots confirm the
previous conclusions about the 
shapes of the phase dependences.  

m

m

m



  

a slices at the maxima of  W

(a,b)

spectra for all the studied basis 
functions. The maxima imply the scales
where the analyzed Gaussian is best
visible, the widths of the spectra indicate
the resolutions of the Gaussian .

m

m
m



  

W ga ,b=C cos
1 /42a cosbexp −0.5 a22

W g2
a , b=C cos 2

1 /42a
3

cosba22 exp −0.5 a22

Analytical solutions of integral (1) when cosine is decomposed:

for Gaussian: 

for MHAT

Summary: The phase dependence is always cosine with the original 
frequency and phase. The cosine amplitude depends on scale a and the 
frequency of the analyzed cosine.  It goes to 0 for both small and large 
scales. 

(5)

(6)

W m a , b=
C cos

1/4

[0.51.5 exp−m
2 −2 exp−0.75m

2 ]a
2

cosb×

× {exp [−0.5m−a2]exp [−0.5ma2]}

for Morlet

(7)



  

The next slides present two-dimensional amplitude (i.e. W

(a,b)) spectra of the 

cosine function with frequency =1 and phase =0 along with the slices done 
at their maxima along b (phase)  and along a (scale) axes.  The 
analytical solutions are always compared with the corresponding numerical 
results and the Monte Carlo simulations when 500 raised cosine distributed  
values are generated.  The Morlet frequency is chosen to be 

m
= 6.

Example



  

W


(a,b)
spectra
of the
studied
cosine
function.
The cosine
is always
manifes-
ted by the
maxima
at phase 
b==0 and
minima at
b=± but 
at different
scales, 
depend-
ing on the
used basis
function.



  

b slices at the maxima of W

(a,b)

spectra for all the studied basis 
functions. The slices where the maxima
are observed are done at the scales a 
which are displayed in the Figures. 
The plots are visual tests proving that 
the amplitude dependences on phase 
b  have indeed expected cosine 
shapes. 



  

a slices at the maxima of W

(a,b) 

spectra for all the studied basis 
functions. The plots indicate how is 
single Fourier frequency seen in scale 
space. Each  is represented by 
spectrum of scales a. Roughly  a

max

(the position of maximum). The maxima
for higher harmonics would appear 
closer to 0, since  a

max
()

 
 1/ for all 

the tested basis functions.



  

Correction of wavelet spectra for detector effects

How to correct wavelet spectra for limited detector efficiency?

Fig. left: The efficiency  of some 
imaginary detector (in fact gene-
rated   by   random   walk).  The 
irregularities may distort wavelet
spectra on all scales.

Fig. right: An impact of the same 
detector   on   the   real    (“true”) 
spectrum.   The   true   spectrum 
consists of  a couple of randomly 
distributed  Gaussians with diffe-
rent 's, the total statistics is 1000.    



  

W true−W measured=W true
uniform−W measured

uniform , (8)We come out from the identity:

i.e. the difference between true and measured wavelet spectra of 
arbitrary distribution is same as the difference between true and 
measured wavelet spectra of uniform distribution. 

               is  produced  from  large  number  of  events  which  eventually 
create uniform true distribution even though the distributions of  single 
events are not uniform.  

W measured
uniform

In heavy ion collisions this condition is fulfilled for both (mid)rapidity and 
azimuthal distributions.

Remarks: 1) This correction assumes ideal detector resolution.
                 2) Detector efficiency should not change dramatically and erratically
                      during the period when the event sample is measured.



  

The MHAT wavelet  spectra of  the
previously shown event. Differences
between the true and the  corrected 
spectra  seems  larger  on   smaller 
scales   which  suggests  they are 
primarily   caused   by   statistical 
fluctuations. 



  

W  a , b=
C 

n ∑
i=1

n


x i−b

a
 ,

f x =d N
dx

=1
n ∑i=1

n

 x−x i ,

[W  a , b]=
C

n ∑i=1

n

2
x i−b

a
 ,

it is necessary to find out how the statistical deviations are 
propagated in the wavelet spectra;

If some distribution f(x) of n measurements x
1
, x

2
, … , x

n
 has the form: 

then its wavelet spectrum is 

i.e. integral in the formula (1) for the wavelet transform is replaced by sum. 

(9)

(10)

Subsequently the errors of wavelet coefficients when calculated through 
error propagation are  

(11)
providing the input 
fluctuations  are 
described  by  
Poisson distribution.



  

The resulting wavelet coefficients W

(a,b) are due to the central limit 

theorem Gaussian distributed which is valid mainly at larger scales. 

Figure:  The  distribution and  the corresponding MHAT wavelet
of MC event containing a few randomly distributed  Gaussians with 
various   's at the total statistics 100.    

Example: errors for the MC event shown below



  

The phase wavelet spectra of the studied event. The plots are done at the scales 
a=1, 2, 3, 4 and show the error corridors as well. Statistical significance of the 
observed structures has increasing trend when going to larger scales.



  

The  scale  wavelet  spectra  of  the  studied  event  along  with  the 
corresponding errors. The plots are done at the phases b= -7, -2, 2, 7. 
The errors does not show significant scale dependence.



  

W corrected=W measuredW true
uniform−W measured

uniform

Knowing how to calculate the statistical errors, we may return to the 
previous problem. 

1) We calculate directly errors for W
true

; 
2) We evaluate errors of W

corrected  
through error propagation using 

identity (8)

providing the errors of the input wavelet spectra✷ are independent; 
3) The spectra  W

true 
and W

corrected 
 are compared if they are consistent

within the resulting statistical errors. If yes, the correction works O.K..

The last step is not finished yet.

W true
uniform

           can be replaced by the analytical solution in order to eliminate this 
source of errors.

✷

(12)



  

Plan:
1) Scalograms (integrals of wavelet power spectra 
over a certain range of scales) 
2) To estimate errors of parameters extracted from
wavelet spectra

Summary and conclusions

1) Wavelet transform of Gaussian peak and cosine function was 
studied employing the various basis functions. 
2) It is possible to determine the parameters of the
decomposed functions  from the amplitude (wavelet) spectra.
3) The analytical solutions are in very good agreement with the
numerical calculations and the MC simulations.  
4) It is presented how to correct the wavelet spectra for limited 
detector efficiency.
5) Propagation of statistical errors in the wavelet spectra is 
estimated.


