Kinetics description of W and Z bosons vacuum creation in the Early Universe

S.A. Smolyansky, V.V. Dmitriev, A.V. Prozorkevich¹ D.B. Blaschke²

¹Physical Department of Saratov State University

²Institute for Theoretical Physics, University of Wroclaw Bogoliubov Laboratory for Theoretical Physics, JINR

XIX INTERNATIONAL BALDIN SEMINAR September 29 - October 4, 2008

イボト イヨト イヨト

Outline

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others ٢

- Kinetic equations
- Numerical calculation
- Step-like approximation

個 とくき とくきと

Important role of W, Z in different physical problems (including cosr Simplest model of QFT with higher spin Others

イロト イポト イヨト イヨト

Outline

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

Motivation	
Our Results	
Summary	

Important role of W, Z in different physical problems (including cosm Simplest model of QFT with higher spin Others

イロト イポト イヨト イヨト

Outline

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

Motivation	
Our Results	
Summary	

Important role of W, Z in different physical problems (including cosr Simplest model of QFT with higher spin Others

イロト イポト イヨト イヨト

Outline

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

Important role of W, Z in different physical problems (including cosr Simplest model of QFT with higher spin Others

→ E > < E >

ъ

W, Z bosons in early Universe

	Motivation Our Results Summary	Important role of W, Z in different physical problems (including cosr Simplest model of QFT with higher spin Others
Universe evolution		

Radiation dominated Universe with EoS

$$p = \varepsilon/3$$

The corresponding scale factor

$$a(\eta) = a_1 \sinh(\eta), \quad t = a_1 (\cosh(\eta) - 1)$$

프 > 프

Kinetic equations Numerical calculation Step-like approximation

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

 Motivation
 Kinetic equations

 Our Results
 Numerical calculation

 Summary
 Step-like approximation

Kinetic equations

Distribution function of vector bosons

$$f_{\mathcal{S}}(J,\eta) = < 0 |A^{\dagger}_{\mathcal{S}}(J,\eta)A_{\mathcal{S}}(J,\eta)|0>$$

Kinetic equations

$$f_{s}'(J,\eta) = \frac{1}{2} w_{s}(J,\eta) \int_{\eta_{0}}^{\eta} d\eta' w_{s}(J,\eta') \left[1 + 2f_{s}(J,\eta')\right] \cos 2\theta \left(J;\eta,\eta'\right)$$

イロト イポト イヨト イヨト

ъ

 Motivation
 Kinetic equations

 Our Results
 Numerical calculation

 Summary
 Step-like approximation

Kinetic equations

Amplitudes

$$W_{\perp}(J,\eta) = \omega'(J,\eta)/\omega(J,\eta)$$

$$w_{\parallel}(J,\eta) = -w_{\perp}(J,\eta) + 2a'(\eta)/a(\eta)$$

where frequency

$$\omega(\boldsymbol{J},\eta) = \left[\lambda^2 + \boldsymbol{m}^2 \boldsymbol{a}^2(\eta)\right]^{1/2}$$

ヘロト ヘワト ヘビト ヘビト

ъ

Motivation	Kinetic equations
Our Results	Numerical calculation
Summary	Step-like approximation

Vacuum creation mechanisms

$$w_{\perp}(J,\eta) = \left(\frac{ma}{\omega}\right)^2 \left[\frac{m'}{m} + \frac{a'}{a}\right]$$

Inertial mechanism

프 🖌 🛪 프 🛌

э

Kinetic equations Numerical calculation Step-like approximation

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

Motivation	
Our Results	Numerical calculation
Summary	

ODEs

ODE system

$$f'_{s} = \frac{1}{2} w_{s} u_{s}, \qquad u'_{s} = w_{s} \left[1 + 2f_{s}\right] - 2\omega v_{s}, \qquad v'_{s} = 2\omega u_{s}$$

Number density

$$n_{s}\left(\eta
ight)=rac{3g_{s}}{2\pi^{2}a^{3}\left(\eta
ight)}\int d\mu\left(\lambda
ight)f_{s}\left(J,\eta
ight)$$

æ

イロト イポト イヨト イヨト

Motivation Kinetic ed Our Results Numerica Summary Step-like

Numerical calculation Step-like approximation

イロト イポト イヨト イヨト

ъ

Numerical calculation

Motivation Kinetic equations Our Results Numerical calculation Summary Step-like approximation

Numerical calculation

→ E → < E →</p>

< 🗇 🕨

ъ

Motivation	
Our Results	
Summary	

Kinetic equations Numerical calculation Step-like approximation

・ 回 ト ・ ヨ ト ・ ヨ ト

Outline

2

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others

- Kinetic equations
- Numerical calculation
- Step-like approximation

 Motivation
 Kinetic equations

 Our Results
 Numerical calculation

 Summary
 Step-like approximation

Step-like law

 the mass of the vector bosons is changed according to a step-like law

$$m(\eta) \rightarrow m(\eta) = m_w \theta (\eta - \eta_0)$$

э

kinetic equation can be solved exactly !!!

Motivation	
Our Results	
Summary	Step-like approximation

Distribution function

Step-like

$$f(J,\eta) = \frac{m_{W}^{4}}{8\omega^{4} - m_{W}^{4}}\theta\left(\eta - \eta_{0}\right)$$

Total particle number density

$$n = \frac{gm_w^3}{2\pi^2} \int_0^\infty \frac{x^2 dx}{8(1/2 + x^2)^2 - 1} \sim 0.1 \cdot m_w^3$$

・ 回 ト ・ ヨ ト ・ ヨ ト

3

Summary

T.W.B. Kibble, Phys. Rept. 67, 183 (1980).

t (s)	T (eV)	R/R _{now}	х	
10 **	10 ²⁸	10-32		Planck time
			160.75	
10 ⁻³⁷	1024	10 ⁻²⁸	*****	GU
			106.75	
10-11	1011	10 ⁻¹⁵	******	WS
			96.75	
10-7	10 ⁹	10-13	?	N pairs 💊
			14.25	
10-4	10 ⁸	10-12		μ [±] ∖.
			10.75	
1	106	10 ⁻¹⁰	_	e⁺∖
			7.25	
10 ¹³	1	10-3	(effect. ~5)	recombination
10 ¹⁸	3 K.	1		present

Taking into account that $a_{ph}/a_{nd} \sim 10^{-15} \div 10^{-14}$, we get $n_{nd} \sim 10 \div 10^4 \text{ cm}^{-3}$, that corresponds to nowaday CMB photon density satisfactorily.