Kinetics description of W and Z bosons vacuum creation in the Early Universe

S.A. Smolyansky, V.V. Dmitriev, A.V. Prozorkevich ${ }^{1}$ D.B. Blaschke ${ }^{2}$

${ }^{1}$ Physical Department of Saratov State University
${ }^{2}$ Institute for Theoretical Physics, University of Wroclaw Bogoliubov Laboratory for Theoretical Physics, JINR

XIX INTERNATIONAL BALDIN SEMINAR September 29 - October 4, 2008

Outline

(9) Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

Outline

(1)
Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

Outline

(9) Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

Outline

(1) Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

W, Z bosons in early Universe

Universe evolution

- Radiation dominated Universe with EoS

$$
p=\varepsilon / 3
$$

- The corresponding scale factor

$$
a(\eta)=a_{1} \sinh (\eta), \quad t=a_{1}(\cosh (\eta)-1)
$$

Outline

(1) Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

Kinetic equations

- Distribution function of vector bosons

$$
f_{s}(J, \eta)=<0\left|A_{s}^{\dagger}(J, \eta) A_{s}(J, \eta)\right| 0>
$$

- Kinetic equations

$$
f_{s}^{\prime}(J, \eta)=\frac{1}{2} w_{s}(J, \eta) \int_{\eta_{0}}^{\eta} d \eta^{\prime} w_{s}\left(J, \eta^{\prime}\right)\left[1+2 f_{s}\left(J, \eta^{\prime}\right)\right] \cos 2 \theta\left(J ; \eta, \eta^{\prime}\right)
$$

Kinetic equations

- Amplitudes

$$
\begin{gathered}
w_{\perp}(J, \eta)=\omega^{\prime}(J, \eta) / \omega(J, \eta) \\
w_{\| \mid}(J, \eta)=-w_{\perp}(J, \eta)+2 a^{\prime}(\eta) / a(\eta)
\end{gathered}
$$

- where frequency

$$
\omega(J, \eta)=\left[\lambda^{2}+m^{2} a^{2}(\eta)\right]^{1 / 2}
$$

Vacuum creation mechanisms

$$
w_{\perp}(J, \eta)=\left(\frac{m a}{\omega}\right)^{2}\left[\frac{m^{\prime}}{m}+\frac{a^{\prime}}{a}\right]
$$

- Inertial mechanism

$$
m(\eta)=\frac{1}{2} m_{w}\left[1+t h \frac{\eta-\eta_{0}}{\tau_{m}}\right]
$$

Outline

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

ODEs

- ODE system

$$
f_{s}^{\prime}=\frac{1}{2} w_{s} u_{s}, \quad u_{s}^{\prime}=w_{s}\left[1+2 f_{s}\right]-2 \omega v_{s}, \quad v_{s}^{\prime}=2 \omega u_{s}
$$

- Number density

$$
n_{s}(\eta)=\frac{3 g_{s}}{2 \pi^{2} a^{3}(\eta)} \int d \mu(\lambda) f_{s}(J, \eta)
$$

Numerical calculation

Numerical calculation

Outline

Motivation

- Important role of W, Z in different physical problems (including cosmology)
- Simplest model of QFT with higher spin
- Others
(2) Our Results
- Kinetic equations
- Numerical calculation
- Step-like approximation

Step-like law

- the mass of the vector bosons is changed according to a step-like law

$$
m(\eta) \rightarrow m(\eta)=m_{w} \theta\left(\eta-\eta_{0}\right)
$$

- kinetic equation can be solved exactly !!!

Step-like

- Distribution function

$$
f(J, \eta)=\frac{m_{w}^{4}}{8 \omega^{4}-m_{w}^{4}} \theta\left(\eta-\eta_{0}\right)
$$

- Total particle number density

$$
n=\frac{g m_{w}^{3}}{2 \pi^{2}} \int_{0}^{\infty} \frac{x^{2} d x}{8\left(1 / 2+x^{2}\right)^{2}-1} \sim 0.1 \cdot m_{w}^{3}
$$

Summary

囯 T.W.B. Kibble, Phys. Rept. 67, 183 (1980).

t (s)	$T(\mathrm{eV})$	$R / R_{\text {now }}$	N	
10^{-4}	10^{28}	10^{-32}		Planck time
			160.75	
10^{-37}	10^{24}	10^{-28}	GU
			106.75	
10^{-11}	10^{11}	10^{-15}	*****	ws
		10^{-13}	96.75	
10^{-7}	10°		!?	N pairs ${ }^{\text {¢ }}$
	10^{8}	10^{-12}	14.25	
10^{-4}			10.75	$\mu^{*} \boldsymbol{\chi}$
1	106	10^{-10}	-	$e^{ \pm} \downarrow$
			7.25	
10^{13}	1	10^{-3}	(effect. ~5)	recombination
10^{18}	3 K	1		present

Taking into account that $a_{p h} / a_{n d} \sim 10^{-15} \div 10^{-14}$, we get $n_{n d} \sim 10 \div 10^{4} \mathrm{~cm}^{-3}$, that corresponds to nowaday CMB photon density satisfactorily.

