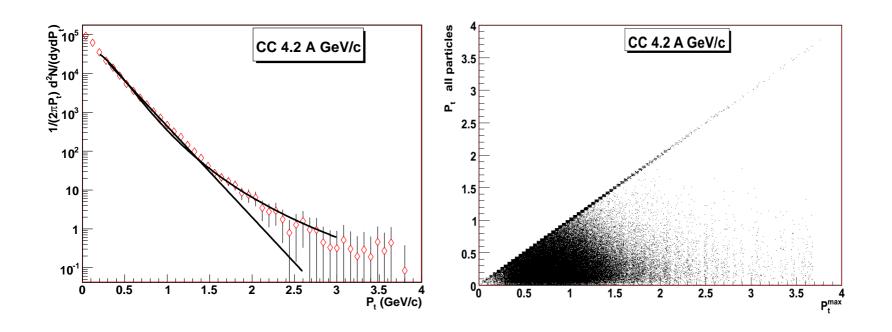
Event structure of pC, dC, αC and CC collisions at incident momentum 4.2 GeV/c per nucleon in P_t space

O.V.Rogachevsky, N.Y.Chankova-Bunzarova, I.Zh.Bunzarov

JINR

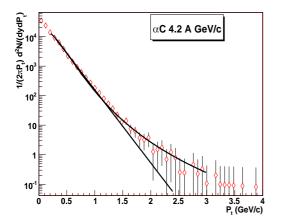

Experimental data

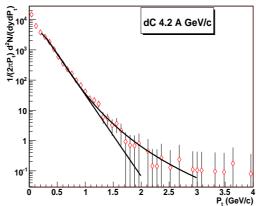
 Experimental data on pC, dC, αC and CC interactions have been obtained by using 2-meter Propane Bubble Chamber of JINR, placed in a magnetic field of 1.5 T and exposed with a beam of light (p, d, α and C) nuclei having incident momentum 4.2 GeV/c per nucleon.

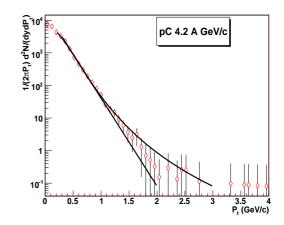
	events	
рС	5722	
dC	3826	
αC	9643	
CC	15842	

- Only unambiguously identified events of interaction of projectiles with carbon and only charged particles p, π +, π were used for the analysis.
- Evaporating protons (P < 0.3 GeV/c) and stripping particles (P > 3 GeV/c & $\theta < 4\circ$) were excluded from the analysis.

Event structure in p_t space

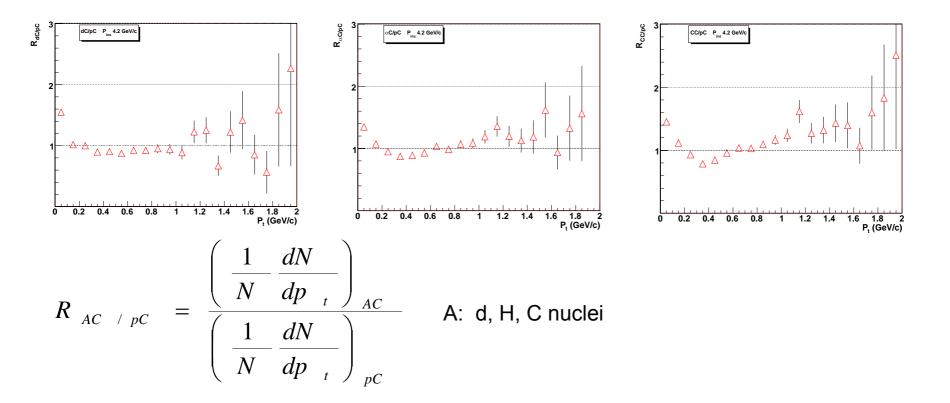



 $P_{t}^{\max} - \text{the highest transverse momentum among all particles in event}$ Levy distribution: $\frac{d^{2}N}{2 \pi P_{t} dP_{t} dy} = \frac{B}{\left(1 + \frac{\sqrt{P_{t}^{2} + m_{0}^{2}} - m_{0}}{nT}\right)^{n}}$


m₀: mass of the hadron

n: power law parameter

Event structure in p_t space


	Exp	Levy	
	Slope	n	Т
рС	-6.21 ± 0.10	5	5.11e-02 ± 6.58e-04
dC	-6.21 ± 0.11	5	4.90e-02 ± 7.30e-04
HC	-5.70 ± 0.05	5	5.13e-02 ± 4.17e-04
CC	-5.39 ± 0.02	5	5.15e-02 ± 2.86e-04

	Exp (GeV/c)	Levy (GeV/c)
pC	0.3 – 1.1	0.2 – 3.0
dC	0.3 – 1.1	0.2 – 3.0
HC	0.3 – 1.5	0.2 – 3.0
CC	0.3 – 2.0	0.2 – 3.0

Fitting results

Fitting ranges

dC/pC, α C/pC and CC/pC ratios

Summary

- Analysis of events in pC, dC, aC and CC interactions was performed by using the variable $\mathsf{P}_t^{\,\text{max}}$
- Events in the plot of dependence P_t of all particles on P_t^{max} of event reveal different structure
- Number of particles with high P_t increases with atomic number of colliding nuclei
- From our analysis it becomes clear that the observed features should be more thoroughly investigated since they may provide some new information on the collision dynamics