EXPLANATION OF UNUSUAL

 $\mathrm{np} \rightarrow \mathrm{np} \pi^{+} \pi^{-}$AND $\mathrm{np} \rightarrow \mathrm{np} K^{+} K^{-}$ REACTIONS AT $P_{n}=5.2 \mathrm{GeV} / \mathrm{c}$ BY MODEL OF ROTARY TWO-NUCLEONS SYSTEM
G.M.Amalsky (PNPI, Gatchina)

$\mathrm{np} \rightarrow \mathrm{np} \pi^{+} \pi^{-}$and $\mathrm{np} K^{+} K^{-}$at $\mathrm{P}_{\mathrm{n}}=5.2 \mathrm{GeV} / \mathrm{c}$

 (JINR) Yu.A.Troyan, A.V.Beljaev, A.Yu.Troyan, E.B.Plekhanov, A.P.Jerusalimow, S.G.Arakelian Proc. XVIII ISHEPP, v.1, p.114, and v.2, p. 186

$\mathrm{p}+\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{p} K_{S}^{0}+\mathrm{X}$ at $\mathrm{P}_{\mathrm{p}}=10.0 \mathrm{GeV} / \mathrm{c}$

 P.Zh.AsLanyan, V.N.Emelyanenko, G.G.Rikhkvitskaya, (JINR) Proc. XVII ISHEPP, 2005, v.II, p. 26.

Similar peaks, looks as $\mathbf{p p} \rightarrow \mathbf{p} \boldsymbol{K}_{\boldsymbol{S}^{\mathbf{+}}} \mathbf{X}$ 8 free protons and 18 from 3 nuclei C^{12}.
$N_{p}{ }^{\text {(eff })}=8+k^{(i)} 18 ;$ for $\mathrm{i}=1-3 \quad k^{(i)} \sim 2 / 3$

PROPERTIES OF SELECTED EVENTS np $\pi^{+} \pi^{-}$

$$
\Delta \mathbf{P}_{\mathrm{n}}^{\prime}>1.5 \mathrm{GeV} / \mathrm{c}: \text { isospin }(\mathrm{n}+\mathrm{p}) \tau=0 .
$$

Peaks $\pi^{+} \pi^{-} J^{P C}=0^{++}$are not resonances

Data have nothing explanation ~ 10 years.

PROPERTIES OF np $\pi^{+} \pi^{-}$EVENTS

Isotropic distribution: $\pi^{+} \pi^{-}$pairs are not emitted by moving nucleons.
$\mathrm{L}_{\pi \pi}=0$ limited sphere $\Delta \mathbf{r}<\mathbf{h} / \Delta \mathbf{P}_{\pi \pi} \sim 0.2 \mathrm{fm}$ and time $\Delta \mathbf{t}<\mathbf{h} / \mathbf{c} \Delta \mathbf{P}_{\pi \pi} \sim 10^{-25} \mathbf{s e c}$ of formation of pairs with $\Delta \mathbf{P}_{\pi \pi} \sim \mathrm{GeV} / \mathrm{c}$. Mean cross-section of peaks $\left\langle\sigma_{\pi \pi}^{(\mathrm{i})}\right\rangle=124$ (18) $\mathrm{mkb} / 8=16$ (3) mkb and $\sigma_{\pi \pi} \sim 1 \mathrm{mb}$ of all $\mathrm{np} \pi+\pi 0^{++}$events is more 3 \% of all inelastic events np,
despite of limited $\Delta \mathbf{r}$ and $\Delta \mathbf{t}$ of formation. $\mathrm{np} \pi^{+} \pi^{-}$with $\mathrm{L}_{\pi \pi}>0$ are suppressed: all inel. event $n p \pi^{+} \pi^{-}$happen in small Δr.

$\mathrm{Np} \rightarrow \mathrm{np} K^{+} K^{-}$at $\mathrm{P}_{\mathrm{n}}=5.2 \mathrm{GeV} / \mathrm{c}$

Mean difference of neighbor masses

$$
\left.<M_{n k}{ }^{(i+1)-} M_{n k}^{(i)}\right\rangle=56.5 \text { (1.2) } \mathrm{MeV} / \mathrm{c}^{2}
$$

is near to half of mean difference

$$
<\mathrm{M}_{\left.\pi \pi^{(\mathrm{i}+1)}-\mathrm{M}_{\pi \pi}{ }^{(\mathrm{i})}\right\rangle=109 \text { (2) } \mathrm{MeV} / \mathrm{c}^{2} .}
$$

in first spectrum: the same origin of peaks may be assumed --- quantization of angle momentum $\mathrm{J}=\mathrm{L}+\mathrm{S}$ of short state of two-nucleons system, formed in collision.

Short rotary states of (np) system

Peaks $\mathbf{M}_{\pi r^{(i)}}$ can be explained by quantization of energy

$$
\Delta \mathrm{E}(\mathrm{~J})=(2 \mathrm{~J}+1) \mathrm{V} \text {, emitted }
$$

at transition ($n+p$) system from
$L_{1}=J+1, S_{z}=-1$ to $L_{2}=J-1, \quad S_{z}=1$,
and transformed into $\pi^{+} \pi^{-}$mass (or divided between nK^{+}and pK^{-})

In states with $\mathrm{S}=1$ and $\tau=0$
moments $L^{(i)}$ must be even, so

$$
L_{1}{ }^{(i+1)}-L_{1}^{(i)}=2 .
$$

Short state with moment $L_{1}=b P_{n}$ forms in laboratory system.

EXP. SPECTRA AND ITS DESCRIPTION

(black line) $\mathrm{M}_{\pi \pi}{ }^{(\mathrm{i})}=\mathbf{2 V}\left(\mathrm{L}_{1}{ }^{(i)}-\mathbf{1} / \mathbf{2}\right) / \mathbf{c}^{2}$,
(blue line) $\mathbf{M}_{n K^{(k)}=}=V\left(L_{1}{ }^{(k)}-1 / 2\right) / c^{2}+m+2 m_{\pi}$
(red line) $\mathbf{M}_{\left.p K^{(i)}\right)}=V^{\prime}\left(L_{1}{ }^{(i)}-1 / 2\right) / c^{2}+m+2 m_{\pi}$
$\boldsymbol{V}=\frac{h^{2}}{6 m R_{0}^{2}}, \quad \boldsymbol{V}^{\prime}=\frac{h^{2}}{2 m R_{0}^{2}} \frac{\left(m+4 m_{\pi}\right)}{\left(3 m+4 m_{\pi}\right)}$
$R_{0}=0.50 \mathrm{fm}, m=\mathbf{m}$ is nucleon mass

DATA CAN NOT BE DESCRIBED AS COLLISIONS IN S.C.M.

$P_{n}=5.2 \mathrm{GeV} / \mathrm{c}$ and $\mathrm{E}=6.22 \mathrm{GeV}$ in lab.sys. correspond to $E^{\prime}=3.42 \mathrm{GeV}$ and $P_{n}^{\prime}=P_{P}^{\prime}=1.43 \mathrm{GeV} / \mathrm{c}$ in s.c.m. (np)'. Transitions with $\Delta \mathrm{L}=2$ and emitted $\Delta \mathrm{E}(\mathrm{J})$ in s.c.m. are impossible. Spectra confirm to momentum $\mathrm{L}=\mathrm{bP} \mathrm{n}_{\boldsymbol{n}}$ in fixed laboratory system. Next sequence of events may be: 1) collision with $L=b P_{n} \rightarrow 2$) rotation with $J=L+S$, transition $\Delta \mathrm{L}=2$ and definition of energy $\Delta \mathrm{E}(\mathrm{J}) \rightarrow 3$) decay of rotation and formation of observed finite particles with $\Sigma L_{f}=L-2$ in laboratory system.
Condition $\Sigma \mathrm{L}_{\mathrm{f}}=\mathrm{L}-2$ and energy $\Delta \mathrm{E}(\mathrm{J})$ define observed correlation of finite particles.

HARD BALLS SCATTERING IN LAB.S.

In laboratory system: $L_{z}=b P_{n}=26$ may be, hard balls: explanation $L^{\prime}{ }_{z}=L_{z}=2 R_{0} P_{n}{ }^{\text {(tan. })}$, observed in spectra.
in lab.system: moment $J=L+S$ can be kept

QUANTIZAYION OF P'p DIRECTION (IN LAB. SYSTEM) EXPLAINS L’=L

Radial movement of center of masses gives zero contribution in momentum of system L relative to point O in lab. sys., so L keeps as moment of rotation of twonucleons system L'=L in its s.c.m..

$\mathrm{Np} \rightarrow \mathrm{np} K^{+} K^{-}$at $\mathrm{P}_{\mathrm{n}}=5.2 \mathrm{GeV} / \mathrm{c}$

Data are incompatible with invariance:

in events $\mathrm{c}^{2}\left(\mathrm{M}_{n K}+\mathrm{m}_{\mathrm{p}}+\mathrm{m}_{\mathrm{K}}\right) \sim \mathrm{E}^{\prime}=3.42 \mathrm{GeV}$ momentum in s.c.m. L' ~ 0 and $L \sim 0$ in such events of oncoming n and p
$n \longrightarrow\left(E^{\prime}\right) \longleftarrow p$
with energy $E=E^{\prime}$ in laboratory system.

Remarks of invariance

Events $n p \pi^{*} \pi^{-}$with large $L>20$ and $c^{2}\left(\mathrm{M}_{\pi \pi}+\mathrm{m}_{\mathrm{p}}+\mathrm{m}_{\mathrm{n}}\right) \sim \mathrm{E}^{\prime}=3.42 \mathrm{GeV}$
are impossible in collisions of oncoming n and p with total energy E ' too because of law of conservation of momentum L .

Absence of invariance of s.c.m. and of laboratory system means: relativity, which claims existence of invariance, is mistaken.

It may be proved straight.

QUANTIZATION J=L+S AND PROPOSED DESCRIPTION OF DATA ARE INCOMPATIBLE WITH RELATIVITY TOO

Relativistic Lorentz ratio

$$
J_{z}^{\prime}=J_{z}\left(1-v^{2} / c^{2}\right)^{1 / 2}
$$

of transverse moments in moving and in fixed systems means nonconservation of momentum $L_{z}=b P_{n}$ and forbids quantization of angle momentum in general.

Useful for description of data

 model with quantized L'=L must be incompatible with relativity. (Relativity is incompatible and with other laws of nature.)
Further plan

1. PHENOMENOGICAL ANALISYS:

hypothesis of nonequilibrium interaction

+ "hard ball" assumption of nucleons, definition of empirical parameters, opposition to well-known conceptions.

2. SOLID-BODY ROTATION MODEL:

gives ratio $V_{S L}=\left(I_{S} / I_{L}\right) h^{2} /\left(I_{S}+I_{L}\right)$ for potential energy $\Delta \mathrm{U}^{(\mathbf{s}-\mathbf{b})} \mathbf{1 2}_{\mathbf{2}}=\mathrm{V}_{\mathrm{SL}}\left(2 \mathrm{~L}_{\mathbf{1}}-1\right)$, emitted at transition $L_{1} \rightarrow L_{1}-2$.
3. IMPERATIV SLOWING-DOWN OF NONEQUILIBRIUM ROTATION:
explanation of 100% transition probability and preliminary transition $\mathrm{S}_{0}=0$ into $\mathrm{S}_{\mathrm{z}}=-1$ 4. CONCLUSIONS:
conservation of moment J in lab. system defines impulses of final particles and mesons formation.
in free time:other grounds for model assumptions

NUCLEONS AS "BLACK BALLS"

Near equidistant peaks show that momentum of inertia \boldsymbol{I} is independent of momentum \mathbf{L}

It treats: in short state with momentum J=L+S nucleons
interact as hard balls with radius
R_{0}, independent of L and b.

Nucleon is stable distribution of probabilities of possible events with any particles, which form it.

ABSENCE

OF RETARDING EFFECT

Nucleon is probability distribution of some unknown possible inner events in its volume.

Probability of possible event are non-material abstract possibility to detect it with using other events.

Therefore all probabilities of possible (in future!) events may be changed simultaneously in agree with changing conditions, which can be defined in point of contact of distributions (nucleons).

DEFINITION OF EMPIRUCAL

 PARAMETRS OF SPECTRARatio $\mathrm{C}^{2} \mathrm{M}_{\pi \pi}{ }^{(\mathrm{i})}=2 \mathrm{~V}_{\pi \pi}\left(\mathrm{L}_{1}{ }^{(\mathrm{i})}-\mathbf{1} / 2\right)$ and $\tau=0$
define values $L_{1}{ }^{(i)}$ and $L_{1}{ }^{(m a x)}$ by using
$V_{\pi \pi}=c^{2}\left(M_{\pi \pi}{ }^{(8)}-M_{\pi \pi}{ }^{(1)}\right) / 28=27.2(0.5) \mathrm{MeV}$
Values $\mathrm{V}_{\mathrm{nK}}=\mathbf{2 8 . 2 (0 . 6)} \mathrm{MeV}$ in emp.
ratio $\quad c^{2} M_{n K}{ }^{(k)}=V_{n K}\left(L_{1}{ }^{(k)}-1 / 2\right)+M_{0}$
defined as $V_{n K}=C^{2}\left(M_{\pi \pi}{ }^{(7)}-M_{\pi \pi}{ }^{(1)}\right) / 12$.
Using of $\mathbf{V}_{\mathrm{nK}}, \mathbf{M}_{\mathrm{nK}}{ }^{(\max)}$ and $\mathbf{L}_{\mathbf{1}}{ }^{(\max)}$ gives values of $\mathbf{L}_{1}{ }^{(\mathbf{k})}$ and

$$
M_{0}=M_{n K}(\max)-V_{n K}\left(L_{1}^{(\max)}-1 / 2\right) / c^{2}=
$$

$=1230(20) \mathrm{MeV} / \mathrm{c}^{2} \cong \mathrm{~m}+2 \mathrm{~m}_{\pi}$.
Data define all parameters in ratios.

SCHEME OF DEFINITION OF EMPIRICAL PARAMETRS

- $\mathbf{M}_{\pi \pi}{ }^{(8)}, \ldots, \mathbf{M}_{\pi \pi}{ }^{(1)}$ fix green line, slope $V_{\pi \pi}$ Its crossing with green line $\mathrm{M}_{\pi \pi}$ (max)
gives $L_{1}{ }^{(\max)}=26.4$ and fixes blue line with slope \mathbf{V}_{nK} in point ($\left.\mathrm{L}_{1}{ }^{(\max)}, \mathbf{M}_{\mathrm{nK}}{ }^{(\max)}\right)$.
- Crossing of blue line with axis \mathbf{M} gives $\mathbf{M}_{\mathbf{0}}=1230(20) \mathrm{MeV} / \mathrm{c}^{\mathbf{2}}=\mathbf{m + 2} \mathbf{m}_{\pi}$.
Here red line M_{PK} begins with slope $\mathrm{V}_{\mathrm{PK} 0}$.

DIFFERENT INITIAL MOMENTS

 IN np K $K^{+} K^{-}$AND $n p \pi^{+} \pi$ CHANNELSIn np $K^{+} K^{-}$events initial moments:

$$
\text { odd } \quad L_{0}^{(i)}=L_{1}^{(i)}-1 \text { and } S_{0}=0
$$

Preliminary transition happens

$$
L_{0}{ }^{(i)} \rightarrow L_{1}{ }^{(i)}, S_{0} \rightarrow S_{1}=1
$$

with observed in data increase of masses: $\quad m_{n} \rightarrow m_{n}+\mathbf{2} m_{\pi}$.

At second transition
$L_{1}{ }^{(i)} \rightarrow L_{2}{ }^{(i)}, S_{1} \rightarrow S_{2}$
reactions must happen
$(\mathrm{n}+2 \pi)+(\mathrm{p}+2 \pi) \rightarrow\left(\mathrm{n}+\mathrm{K}^{+}\right)+\left(\mathrm{p}+\mathrm{K}^{-}\right)$. with transformation of
2 pairs $\pi^{+} \pi^{-}$into $K^{+} K^{-}$.

PROBABILITIES OF PEAKS

Mean cross-section of peaks

$<\sigma_{n K}>=63(9) \mathrm{mkb} / 7=9(1.5) \mathrm{mkb}$
is $\sim 1 / 2$ of $<\sigma_{\pi \pi}>=16$ (2) $\mathrm{mkb}:$
it agrees with ratio of statistical
weighs $\frac{g(S=0) g\left(S_{Z}=-1\right)}{g\left(S_{Z}=-1\right)}=\frac{1 / 4 \times 1 / 2}{1 / 4}=\frac{1}{2}$

Reduced probability of peak

$W^{(i)}=\left\langle\sigma^{(i)}\right\rangle /\left(\sigma_{\text {(inel.) }} g(S) g\left(L^{(i)}\right)\right) \sim 0.06$,
with $\sigma_{\text {(inel) }}=30 \mathrm{mb},\left(\mathrm{L}^{(\mathrm{i})}\right)=1 / \mathrm{L}^{(\mathrm{max})} \sim 0.04$.

NONEQUILIBRIUM NN INTERACTION

With momentum L~20 and momentum
of inertia $I_{L}=2 m R_{0}^{2}$ rotation energy

$$
E=h^{2} L(L+1) /\left(2 I_{L}\right) \sim 20 \mathrm{GeV} \gg E_{0}
$$

For conservation energy during
$\Delta \mathrm{t} \sim \mathrm{h} / \Delta E \sim 0.01 \mathrm{fm} / \mathrm{c} \sim 3 \cdot 10^{-26} \mathrm{sec}$ potential energy of nucleons interaction must be decreased according to ΔE :

$$
\Delta U(n e q)=-\Delta E .
$$

Here system (np) with momentum L at once is created in such states with large probability~100\% of suitable (np) events.

Short existence Δt of rotary system can explain small Δr of formation $\pi^{+} \pi^{-}$.

Interaction is nonequilibrium

 even in stationary statesIn stationary state with energy E of particle in equilibrium potential $U(r)$ nonequilibrium interaction $U(r)^{(n e q)}$ arises always when

$$
E-U(r)<0:
$$

$E-U(r)^{(n e q)}=T(r)>0$ keeps positive sign of kinetic energy.

This is shown in quantum theory (without wave properties of particles) "Statistical physics of undistinguishable events (formalism and examples of use)
preprint PNPI-2005 2628, 2005, Gatchina

WHAT'S NECESSORY TO EXPLAIN

It is desirable to explain:

1) how energy $\Delta \mathrm{E}(\mathrm{J})=\mathrm{M}_{\pi \pi} \mathrm{c}^{2}$ reveals of accident kinetic energies of nucleons ;
2) what properties of nucleons define empirical parameter
$\mathrm{V}^{(e m p)}=\left(\mathrm{V}_{\pi \pi}+\mathrm{V}_{\mathrm{nk}}\right) / 2=27.7$ (0.5) MeV;
3) what mechanism can give $\sim 100 \%$
probability of $\Delta \mathrm{L}=2$ transition at short time $\Delta t \sim 10^{-26} \mathrm{sec}$;
4) why preliminary transition to $S=1$ in npK+K- events happens with $\sim 100 \%$ probability and with formation of 2 pairs $\pi \pi$.

TRANSITION TO SOLID-BODY ROTATION

Formed in moment of collision

orbital movement with momentum

$$
L, \quad \Omega=L h / I_{L}, \quad E=\Omega^{2} I_{L} / 2
$$

is unstable and at once reduces to
solid-body rotation with momentum
of inertia $I_{s-b}=I_{L}+I_{S}, \Omega_{s-b}=L h /\left(I_{L}+I_{S}\right)$
and $\quad E_{s-b}=\Omega_{s-b}^{2}\left(I_{L}+I_{S}\right) / 2$.
$E-E_{s-b}=E I_{s} /\left(I_{L}+I_{s}\right)=U_{s-b}$
is potential energy of interaction of
$h L_{s-b}=\Omega_{s-b} I_{L}$ and $h S_{s-b}=\Omega_{s-b} l_{s}$
at the time Δt of solid-body rotation
with momentum $L=L_{s-b}+S_{s-b}$.

DIFFERENCE OF POTENTIAL ENERGIES IN STATES WITH $\Delta \mathrm{L}=2$

At transition $L_{1}{ }^{(i)} \rightarrow L_{2}(\mathrm{i}), \mathrm{S}_{1} \rightarrow \mathrm{~S}_{2}$
$\Delta U^{(h-b)}{ }_{12}=U_{h-b}\left(\mathrm{~L}_{1}\right)-U_{h-b}\left(\mathrm{~L}_{2}\right)=$

$$
=\frac{\left(2 \mathrm{~L}_{1}-1\right) \mathrm{h}^{2} I_{S}}{I_{L}\left(I_{L}+I_{S}\right)}=\left(2 \mathrm{~L}_{1}-1\right) \mathrm{V}_{\mathrm{SL}} .
$$

With parameter $\quad I_{S}=\mathrm{m} R^{2}$

$$
V_{S L}=\frac{h^{2} I_{S}}{I_{L}\left(I_{L}+I_{S}\right)}=27.6 \mathrm{MeV}
$$

coincides with
$\mathrm{V}(\mathrm{emp})=\left(\mathrm{V}_{\pi \pi}+\mathrm{V}_{\mathrm{nk}}\right) / 2=27.7(0.5) \mathrm{MeV}$

ENERGY $\Delta \mathrm{U}^{(s-b)}{ }_{12}$ LIBERATION

At decay of rotary system excess energy $\Delta U^{(s-b)} \mathbf{1 2}_{2}$ keeps as inner energy of nucleons, which end interaction, and can be emitted in this moment in form of $\pi^{+} \pi^{-}$energy (or in form energy of reaction

$$
\left.2 \pi^{+} \pi^{-} \rightarrow K^{+} K^{-}\right)
$$

"FORSED" STRONG DELAY OF NONEQUILIBRIUM ROTATION

Law $\Delta \mathrm{B}=0$ means: "black balls" must safe for description of nucleons.

Together with exchange of radial impulses of nucleons exchange of tangential impulses is going on, so orbital moment must decrease.

Therefore only reducing rotation may be exist Δt, where contribution of spin $S=1$ in moment $J=L+S$ replaces a decrease of momentum $L=\Omega\left(I_{L}+I_{S}\right)$ of rotation with decreasing of Ω.

DECREASE OF ORBITAL MOMENTUM

At nonequilibrium rotation:

$\mathrm{L}=\mathrm{P}_{\mathrm{n}} \mathrm{b}$ as in lab.sys.: transfer of radial impulse --- as hard balls. $L_{1}=2 R_{0} P_{n}{ }^{\text {(tan.) }}$ can not be kept $L_{2}=2 R_{0}\left(P_{n}^{\prime}{ }^{(\tan)}-P_{p}^{\prime}{ }^{(t a n)}\right)=L_{1}-2$

CAUSAL EVENTS IN

 NONEQUILIBRIUM NN SYSTEM
Law $\Delta \mathrm{B}=\mathbf{0}$ for nucleon (impenetrable

 distributions --- "black balls"), law of conservation J +L+S and law of conservation energy lead to formation of short delay rotation state with causal evolution and replacing of $\Delta \mathrm{L}=2$ by $\Delta \mathrm{S}=2$.For short Δt probabilities of any accidental events is negligible small. Energy $\Delta \mathrm{U}^{(\mathrm{h}-\mathrm{b})}{ }_{12}$ is additional inner energy of nucleons in moment of disintegration of two-nucleon system

EXP. SPECTRA AND ITS DESCRIPTION

(black line) $\mathbf{M}_{\pi \pi^{(i)}}=2 V\left(L_{1}{ }^{(i)}-\mathbf{1} / 2\right) / c^{2}$,
(blue line) $\mathbf{M}_{n K^{(k)}=}=V\left(L_{1}{ }^{(k)}-1 / 2\right) / c^{2}+m+2 m_{\pi}$
(red line) $\mathbf{M}_{\left.p K^{(i)}\right)}=V^{\prime}\left(L_{1}{ }^{(i)}-1 / 2\right) / c^{2}+m+2 m_{\pi}$
$\boldsymbol{V}=\frac{h^{2}}{6 m R_{0}^{2}}, \quad \boldsymbol{V}^{\prime}=\frac{h^{2}}{2 m R_{0}^{2}} \frac{\left(m+4 m_{\pi}\right)}{\left(3 m+4 m_{\pi}\right)}$
$R_{0}=0.50 \mathrm{fm}, m=\mathbf{m}$ is nucleon mass

DATA OF p+ $\mathrm{C}_{3} \mathrm{H}_{8} \rightarrow \mathrm{p} \mathrm{K}_{S^{+}} \mathrm{X}$ at $P_{P}=10.0 \mathrm{GeV} / \mathrm{c}$

Spectrum $\mathrm{M}_{\text {pко }}$ may be described the same ratio as $\mathrm{M}_{\mathrm{nK}+}$ spectrum; increasing of value V' can be explained by contribution of $4 \pi-$ mesons in inner momentum inertia I_{S}

Value $\sigma^{(\mathbf{i})} \sim 90$ mkb for one peak corresponds the same reduced probability $\mathrm{W}^{(\mathrm{i})} \sim 0.06$ at effective number $\mathrm{N}_{\mathrm{p}}=20$ in $\mathrm{C}_{3} \mathrm{H}_{8}$, or weight $2 / 3$ of nuclear protons

COMMENTARY

These data can not be described

 by present quantum theory, which made for calculation of probabilities of possible accident events from them distributions.Crude model of solid-body rotation of two hard balls system with laws of conservation energy and momentum well describes data and explains main properties of unusual causal events with whole nucleons.

SOME PREDICTIONS OF MODEL

Momentum S_{p}^{\prime} of inner rotation of protons with energy of this rotation must be transmitted to neutrons at decay of rotary system since can not be kept at free proton formation.
Free movement of finite proton gives zero contribution in momentum $\Sigma \mathrm{L}_{\mathrm{f}}$ relative to point O ---center of proton.
Therefore pairs $\pi+\pi$ or $\mathrm{K}^{+} \mathrm{K}^{-}$mesons form at decay of excited state of neutron.

In the end of distribution $\mathrm{M}_{\pi \pi} \sim 1.4 \mathrm{GeV} / \mathrm{c}^{2}$ and kinetic energy of relative movement of n, p and pair mesons in s.c.m. is small:
$E^{\prime}-\left(m_{n}-m_{p}-M_{\pi \pi}\right) c^{2}<100 \mathrm{MeV}$.
Value $L=26$ and condition $\Sigma L_{f}=L-2$ lead to next conclusions:

SOME PREDICTIONS OF MODEL

Point of formation $\pi+\pi=$

$\mathrm{L}_{\mathrm{n}}+\mathrm{L}_{\pi \pi}=24=26-2$

PREDICTIONS OF MODEL FOR npK+K-

The end of distribution $M_{n K} \sim 1.98 \mathrm{GeV} / \mathrm{c}^{2}$ corresponds to small kinetic energy of relative movement of nK^{+}and $\mathrm{p}, \mathrm{K}^{-}$ mesons: $E^{\prime}-\left(m_{n}-m_{p}-M_{\pi \pi}\right) c^{2} \sim 0$. Impulse $\mathrm{P}_{\mathrm{n}}^{\prime}=\mathrm{P}_{\mathrm{K}_{+}}^{\prime}=0.66 \mathrm{GeV} / \mathrm{c}$ of n and K^{+} in s.c.m. and them energies $E^{\prime}=1.15 \mathrm{GeV}$, $E_{K_{+}}^{\prime}=0.83 \mathrm{GeV}$, moved with s.c.m., give impulses $P_{n}=1.75 \mathrm{GeV} / \mathrm{c}, \mathrm{P}_{\mathrm{K}_{+}}=1.26 \mathrm{GeV} / \mathrm{c}$.
Contribution of proton $L_{p}=0$ here too. With impulse of $\mathrm{K}^{-} \quad \mathrm{P}_{\mathrm{K}}=0.76 \mathrm{GeV} / \mathrm{c}$ summary impulse of mesons $2.02 \mathrm{GeV} / \mathrm{c}$ can create moment $L_{K+K-}=15$, if $K+K$ - form as pairs $\pi+\pi$.
Together with moment $L_{n}=9$ of neutron it gives model value $\Sigma L_{f}=\mathbf{2 4}=L^{(\max)}-\mathbf{2}$.

Some prediction for the end of distribution $\mathrm{M}_{\mathrm{pK} 0}$ of reaction $\mathrm{ppK}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}^{0}$ at $\mathrm{P}_{\mathrm{p}}=10 \mathrm{GeV} / \mathrm{c}$

With $R_{0}=0.50 \mathrm{fm} \mathrm{L}^{(\max)}=2 \mathrm{R}_{0} \mathrm{P}_{\mathrm{p}} / \mathrm{h}=50$ and $\mathrm{M}_{\mathrm{pKO}}{ }^{(\max)}=\mathrm{M}_{0}+\mathrm{V}_{\mathrm{SL}} \mathrm{L}^{(\max)} / \mathrm{c}^{2}=3.06 \mathrm{GeV} / \mathrm{c}^{2}$. It confirm with maximum contribution of pK_{S} in $\mathrm{E}^{\prime}=\left(\mathrm{E}_{0}{ }^{2}-\mathrm{P}_{0}{ }^{2} \mathrm{c}^{2}\right)^{1 / 2}=4.54 \mathrm{GeV}$: $\mathrm{M}_{\mathrm{pKo}}{ }^{(\max)}=\mathrm{E}^{\prime} / \mathrm{c}^{2}-\mathrm{m}_{\mathrm{p}}-\mathrm{m}_{\mathrm{K}}=3.10 \mathrm{GeV} / \mathrm{c}^{2}$. If impulses $P_{p}^{\prime}=P_{K 0}^{\prime}=1.36 \mathrm{GeV} / \mathrm{c}$ relative movement p and K_{S}^{0} in s.c.m. are transverse, energies E_{p}^{\prime} and $E_{k o}^{\prime}$ in s.c.m. give longitudinal impulses $P_{p}=3.63 \mathrm{GeV} / \mathrm{c}$ and $\mathrm{P}_{\mathrm{K} 0}=3.19 \mathrm{GeV} / \mathrm{c}$ in lab. system.
With contribution of proton $L_{p}=2 R_{0} P_{p} / h=18$ summary moment of two K-mesons $L_{K K}=3 R_{0}(3.19+1.10) \mathrm{GeV} /(\mathrm{hc})=32$ gives $L_{p}+L_{K K}=50=L^{(\max)}$, if pair of K-mesons forms in the same point as $\pi^{+} \pi^{-}$mesons. It confirms that model is consistent.

Probable positions of final particles in events $\mathrm{ppK}_{\mathrm{S}} \mathrm{K}_{\mathrm{L}}$ with maximum $\mathrm{L}_{\mathrm{f}}=50$

Model of hard balls and keeping of moment L (relative point 0 in lab. system) $L_{f}=L_{p^{\prime}}+L_{\text {Kos }}+L_{\text {KoL }}$ (here for $L_{f}{ }^{(\max)}=50$) define spatial positions of formation of final particles and them impulses

COMMON CONQLUSIONS

Inelastic NN interaction is like as

 collision of black balls with radius $\mathrm{R}_{0}=0.50 \mathrm{fm}$.With large probability (possibly, 100%) short rotation states form in laboratory system with quantized momentum J=L+S.
These facts are beyond question and must be taken into account.

Data prove absence of "invariance".
Short strong interaction can explain
origin all events, which are treated as observation of small "partons".

SEPARATELY OF PAIRS $\pi \pi$ ON SURFISE OF NUCLEONS

These data give unique chance: here all characteristics of two-nucleonic system are defined and it is known, that formation of pairs $\pi \pi$ with 100% probability happens in defined point in result of nonequilibrium interaction with known value.

But without right electrodynamics it is impossible to use this to gain a better insight of observed events.

THANK YOU

FOR ATTENTION!

CONFIRMATION OF "BLACK BALL" MODEL BY NN SCATTERING DATA

Independent of energy in wide interval $10-1000 \mathrm{GeV}$ cross-sections of elastic and inelastic $N N$ scattering $\sigma_{\text {el }} \cong 8 \mathrm{mb}$ and $\sigma_{\text {inel }} \cong 32 \mathrm{mb}$ have geometrical sense $\sigma_{\text {inel }} \cong \pi\left(R_{0}\right)^{2}, \sigma_{\text {inel }} \cong \pi\left(2 R_{0}\right)^{2}$ and correspond to collisions of black balls with radius $R_{0} \cong 0.50 \mathrm{fm}$.

It explains ratio $\sigma_{\text {inel }} / \sigma_{\text {el }} \cong 4$, which is fulfilled at energy $\mathrm{E}>10^{6} \mathrm{GeV}$.
(Generally accepted theory of scattering of plane wave $\psi=e^{i k z}$ is useless for description of black balls scattering.)

GEOMETRICAL TREATMENT OF NN SCATTERING CROSS-SECTIONS

RATIO $\sigma_{(\text {inel. })} / \sigma_{(\text {el. })}=4$ FOR BLACK BALLS SCATTERING
hole $4 R_{0}, S=\sigma_{(\text {inel }}$

$$
\sigma_{(\mathrm{el} .)}=\pi R_{0}^{2}=1 / 4 \sigma_{\text {(inel. })}
$$

RELATIVITY IS INCOMPATIBLE

 WITH MAXWELL EQUATIONS$\operatorname{div} \mathrm{E}=\rho$ and relativistic ratio $\mathrm{cH}=[\mathrm{vE}]$ for magnetic field of moving point charge e with field $E(r-v t)$ gives

$$
\operatorname{crot} \mathbf{H}=\operatorname{div} \mathbf{E}-(\mathbf{v} g r a d) \mathbf{E}=\mathbf{v e}=\mathbf{j},
$$

where only conduction current j is, instead of Maxwell equation

$$
\operatorname{crot} \boldsymbol{H}=\mathbf{j}+\partial E / \partial t
$$

with displacement current $\partial E / \partial t$.
Right equation $\mathbf{P}=\left(\mathrm{P}^{2}+\mathrm{m}^{2} \mathrm{c}^{2}\right)^{1 / 2} \mathbf{v} / \mathrm{c}$ for impulse of moving object is empirical law, independent of any theories.

RIGHT SOLUTION OF MAXWELL EQUATIONS

$\partial \mathrm{E}(\mathrm{r}-\mathrm{vt}) / \partial \mathrm{t}=\partial \mathrm{E}\left(\mathrm{r}-\mathrm{vt}_{0}\right) / \partial \mathrm{r}_{\mathrm{v}}$ with $\mathrm{dr}_{\mathrm{v}}=-\mathrm{vdt}$.
$d \mathbf{r}=\mathrm{d}_{\mathrm{r}} \mathbf{r}_{\mathrm{v}}-\mathrm{d}_{(\text {perp) }} \mathrm{r}_{\mathrm{v}}$ and $\quad \partial \mathrm{r} / \partial \mathrm{r}_{\mathrm{v}}=1$;
(t_{0} is essential !) The placing of next ratio
$\partial \mathrm{E} / \partial \mathrm{t}=\partial \mathrm{E}\left(\mathbf{r}-\mathrm{vt}_{0}\right) / \partial \mathrm{r}\left(\partial \mathrm{r} / \partial \mathrm{r}_{\mathrm{v}}\right) \partial \mathrm{r}_{\mathrm{v}} / \partial \mathrm{t}=$
$=-\mathbf{v} \partial \mathbf{E}\left(\mathbf{r}-\mathrm{vt}_{0}\right) / \partial \mathbf{r}=-\mathrm{vdiv} \mathrm{E}=-\mathbf{v e}=-\mathbf{j}$
in Maxwell equations
$c \operatorname{rot} \mathbf{E}=-\partial \mathbf{H} / \partial \mathrm{t}, \quad \operatorname{div} \mathbf{H}=0,(1,2)$
$c \operatorname{rot} \mathbf{H}=\partial \mathbf{E} / \partial \mathrm{t}+\mathbf{j}, \quad \operatorname{div} \mathbf{E}=\rho .(3,4)$
gives equation c rot $\mathbf{H}=\mathbf{j}-\mathbf{j}=0$ for free
point charge with velocity \mathbf{v} and solution
$\mathrm{H}=0$, which is incompatible with relativity.

